

Pathology of hematolymphoid system

Myeloproliferative Neoplasms

Myelodysplastic syndrome

Dr. Tariq Aladily
Professor
Department of Pathology
The University of Jordan
tnaladily@ju.edu.jo

School of Medicine

MYELOPROLIFERATIVE NEOPLASMS

- Was known as the myeloproliferative disorder
- Group of diseases where bone marrow became neoplastic

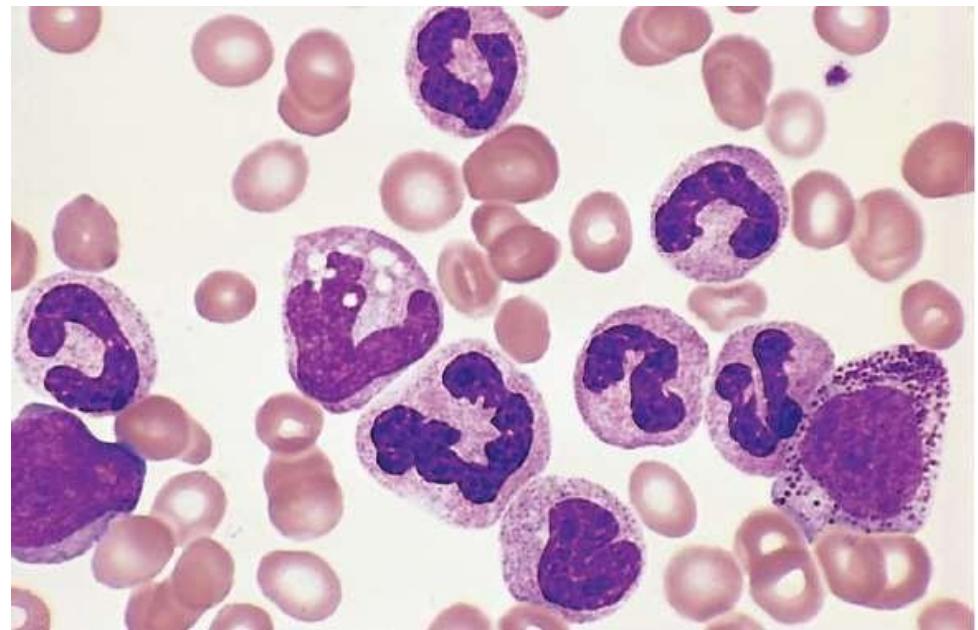
- Maturation is normal, but proliferation is high
Mature RBCs + WBCs are normal but the immature are high
- Permanently active tyrosine kinase pathway, independent from growth factors
mutation in tyrosine kinase pathway result in permanent growth pattern at the disease
- BM is hypercellular, peripheral blood shows cytosis
During aging hematopoietic stem cells are replaced by fat
- Neoplastic stem cells in MPN often seeds to spleen, liver and occasionally INs, causing extramedullary hematopoiesis and thus hepatosplenomegaly
- Tendency to develop a "spent phase" after a long time, characterized by bone marrow fibrosis
Decreased number of cells.

* Tendency to transform to AML

↳ due to
accumulation of
mutations

Acute myeloid leukaemia

CHRONIC MYELOID LEUKEMIA


- Most common MPN
- Peak incidence is 4th-5th decade *Can occur in any age even in Children.*
balanced translocation: translocation without the loss of genetic material. normally 42 / 46
- Harbor t(9;22) (Philadelphia chromosome) results in fusion of Bcr/Abl genes and production of a tyrosine kinase that results in prolonged cell survival
to potent dominant
- Mutation is present in all BM cells (myeloid, erythroid and megas)
↳ Hematopoietic stem cells with different effect on each
- Symptoms: chronic non-specific: fatigue, heavy abdomen, weight loss
↳ Splenomegaly
- Imatinib: tyrosine kinase inhibitor, specific for bcr/abl mutation
*1st targeted drug
↳ Affect only neoplastic cells.*
- Accelerated phase: develop in 50% of patients: worsening of symptoms, higher WBC count, thrombocytopenia, resistance to imatinib
↳ + worsening anemia
- Blast crisis: in the other 50% of patients, transformation to acute leukemia (AML>ALL)
*↳ Blasts become dominant
Myeloblasts + lymphoblasts → acute leukemia*
- * Spent phase: rarely develop
fibrotic bone marrow

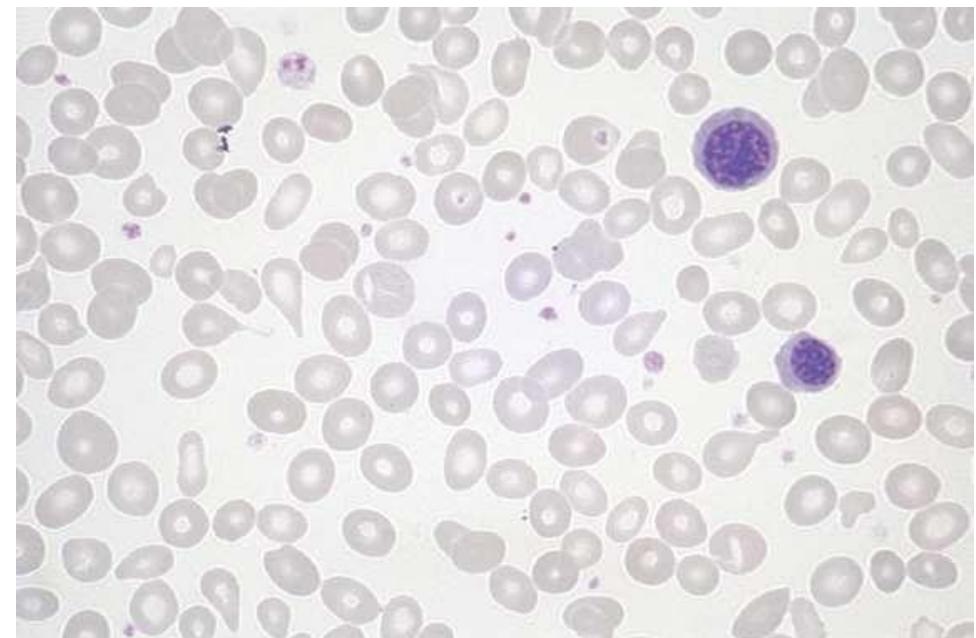
MORPHOLOGY OF CML

myeloid cells

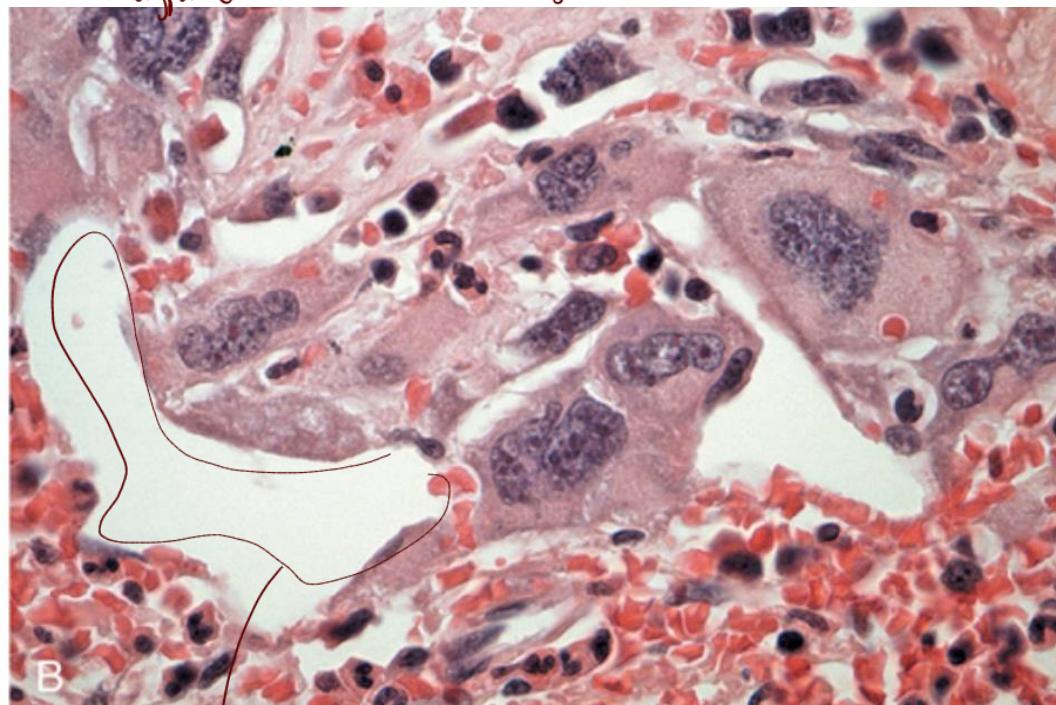
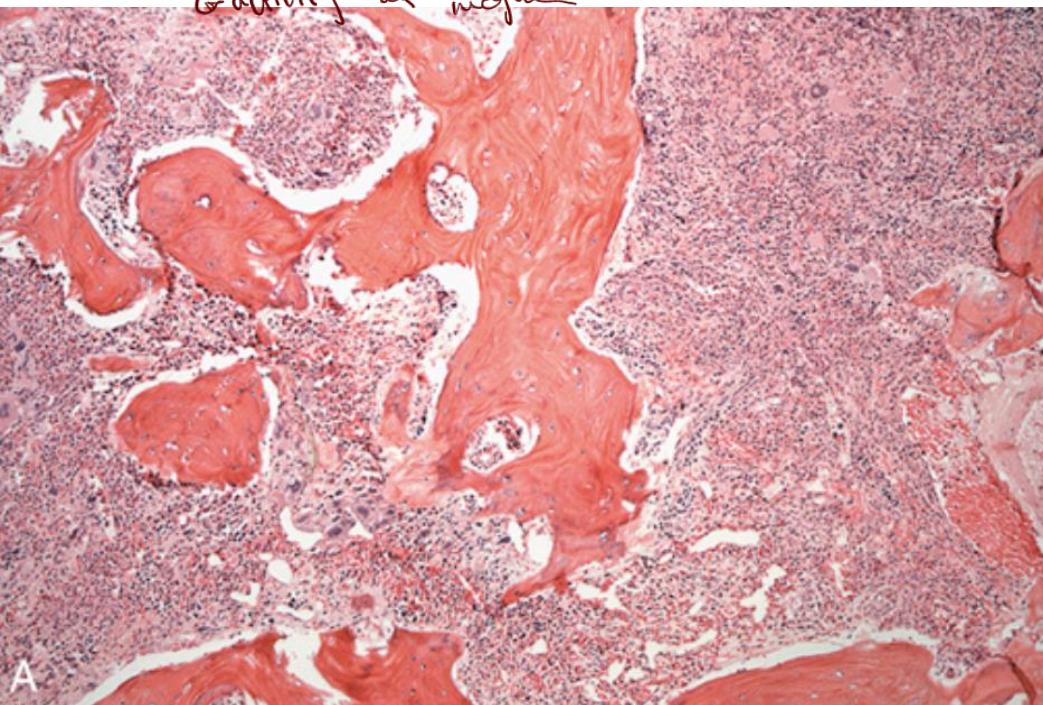
- Leukocytosis, can be >100K
- Shift to left
- Basophilia, eosinophilia
- Thrombocytosis *At beginning is common*
- Anemia
- BM: increased myeloid and meg
- Spleen: EMH
- Blasts: low
- Leukemoid reaction: high WBC and shift to left, occurs in severe inflammation

PRIMARY MYELOFIBROSIS

- Overt BM fibrosis, reducing capacity for hematopoiesis, leads eventually to cytopenia and massive EMH
- massive splenomegaly
- JAK-STAT signaling pathway is active in all cases


Mutation

- 50% have mutation in JAK2, 5% in MPL gene (thrombopoietin receptor), 50% have mutation in CALR gene → calreticulin → activates MPL
 - seen in polycythemia vera
 - Activates megakaryocytes
- Neoplastic megakaryocytes secrete platelet-derived growth factor and TGF-B, which activates fibroblasts in BM to deposit reticulin and collagen fibers, also causes angiogenesis by proliferation of endothelial cells → dilated small blood vessels.
- RBC production is impaired, RBCs appear as tear-drop, patients have moderate to severe anemia



MORPHOLOGY

- Peripheral blood: tear-drop cells, nucleated RBCs, shift to left (leukoerythroblastic anemia)
precursor at both myel and erythroid
unknown reason
- WBC: can be normal or increased
- Plt: high, then low
Because
mega - are the dominant cell
after fibrosis

PMF: left: hypercellular and thick bone trabeculae, right: clusters of abnormal megakaryocytes with large and hyperchromatic "cloud-like" nuclei. Note the dilated sinusoid

- * filled with Hematopoietic cells (no fat cells)
- * Bone osteoid material is thicker than normal
- Graininess at mega-

- * High power view
- * clst of mega-- that are long
- * larger nuclei about 50% of cell volume
- * hyperchromatic and irregular.

Cloud like

sinusoid due
androgenesis and
the activity of mega--

CLINICAL FEATURES

- Non-specific symptoms, weight loss, anemia, massive ^{star} splenomegaly, gout, bleeding, infection
Thrombocytopenia or even thrombocytosis large number of platelets that are not functioning well
- Worse outcome than CML and P Vera. 4-5 years survival
Chronic Myeloid Leukemia
- Frequent transformation to AML (5-20%)
- JAK2 inhibitor: decreases splenomegaly and symptoms
Control

*In
single proliferative*

ESSENTIAL THROMBOCYTHEMIA

Megacaryocytic proliferation and thrombocytosis

- Predominantly thrombocytosis (occasional leukocytosis)
- JAK2 mutation is sometimes positive, but NO bone marrow fibrosis
- Splenomegaly is positive in 50%
- Good outcome

The last disease of the myeloproliferative diseases is the PV.

MYELODYSPLASTIC SYNDROME MDS

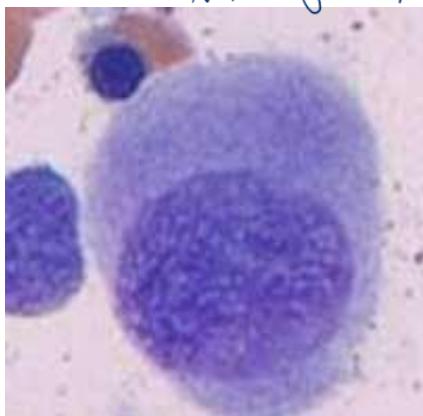
- Main feature is defective maturation, ineffective hematopoiesis, high risk for transformation to AML
- BM is replaced by a clonal progeny of transformed stem cell that has an capacity to differentiate into 3 cell lines but with abnormal morphology and function
* can't eat the bone marrow.
- Hallmark of MDS: hypercellular BM, peripheral cytopenia and morphologic dysplasia can affect any cell line 3 all characterized by abnormal shape and 1 or 2 or 3 decreased number.
- Tendency for accumulating more mutations and transform to AML
- Most cases are idiopathic, rarely follows chemo or radiotherapy (therapy related)
- Most patients are old

In the 8th decade

PATHOGENESIS

very variable

Single chromosome


- Chromosomal aberration in 50% of cases: monosomy 5, monosomy 7, deletions of 5q, 7q, 20q, trisomy 8
- Mutations in epigenetic factors that regulate DNA methylation and histone modifications
- RNA splicing factors: abnormal RNA processing → ring sideroblasts
- Transcription factors *can be mutated*
- 10% have P53 mutation

mutation
special for RNA
splicing

MORPHOLOGY

- Erythroid: macrocytic anemia, megaloblastoid nuclei, ring sideroblasts (iron accumulation inside mitochondria) *Immature* *Almost identical to Megaloblastic anemia*
- Myeloid: decreased granulation, hyposegmented nuclei of neutrophils *1-2 lobes*
- Megakaryocytes: small, hypolobated nuclei
- Myeloblasts: can be increased, but <20% of nucleated cells *Normally 2%* *if reaches 20% → AML*

Iron Accumulates in the mitochondria around the nucleus

Ring sideroblast
Nucleated RBCs with a ring of blue dots

SYMPTOMS

- Refractory anemia, thrombocytopenia, neutropenia
 - Improve with iron, Vit B12
 - tendency to bleed
 - tendency to develop infection
- Survival 9-29 months

