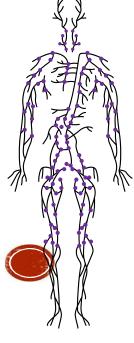


Pathology

MID | Lecture 2

﴿ وَقُل رَّبِ أَدْخِلْنِي مُدْخَلَ صِدْقِ وَأَخْرِجْنِي مُخْرَجَ صِدْقِ وَٱجْعَل لِي مِن لَدُنكَ سُلْطَانَا نَصِيرًا ﴾ ربنا آتنا من لدنك رحمة وهيئ لنا من أمرنا رشدًا

Anemia of Blood Loss


Written by: Nour Aldulaimi

Ansam Othman

Reviewed by: Zain Al-

Ghalaieni

PATHOLOGY OF BLOOD AND LYMPHATIC SYSTEM

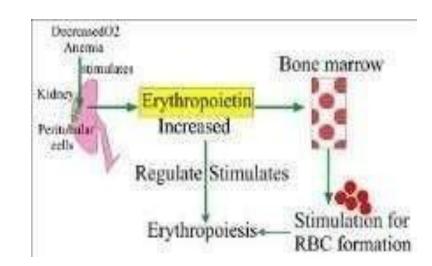
Dr. Tariq Al-Adaily, MD
Associate Professor
Department of Pathology

The University of Jordan

Email: TNALADILY@ju.edu.jo

ANEMIA

DEFINITION


- .Definition of anemia is the opposite polycythemia Anemia decrease in red blood cell mass below the normal level, which may lead to:
- □ Reduction of oxygen carrying capacity of blood to the systems
- secondary to decrease in red cell mass
 - Leads to tissue hypoxia;
 - -Diagnosis by tests...again numeric diagnosis. (symptoms alone are insufficient).
- □ Practically, measure by Hemoglobin concentration (g/dL), and Hematocrit (Percentage of red cell to the whole blood)

ANEMIA AND ERYTHROPOIETIN

Anemia \rightarrow hypoxia \rightarrow sensed by kidneys \rightarrow erythropoietin \rightarrow erythropoeisis

- ☐ Anemia triggers production of erythropoietin
- Causes compensatory erythroid hyperplasia in bone marrow (BM).
- □ In acute anemia, production can increase by 5x or more in healthy people .Healthy BM can produce x5 times the amount of RBC in normal conditions, and can effectively correct anemia.

- In severe cases (or congenital anemia); erythropoietin is high but cannot reverse the anemia, erythropoeisis takes place outside the BM causes extramedullary hematopoiesis in secondary hematopoietic organs (spleen, liver and lymph nodes) so the patient will develop large spleen and liver.
- Exceptions(erythropoietin is المابيزيد (anemia of renal failure (kidneys don't function ...they don't secrete erythropoietin), anemia of chronic inflammation in the next lecture.

CLASSIFICATION ACCORDING TO CAUSE

- 1) Blood loss
- 2) Diminished RBC production (most common), decreased production from BM..BM is inactive and doesn't secrete enough amount from RBC.
- Iron deficiency anemia
- Anemia of chronicinflammation
- Megaloblastic anemia
- Aplastic anemia
- Pure red cellaplasia
- Myelophthisic anemia
- Myelodysplastic syndrome
- Anemia of renalfailure
- Anemia ofhypothyroidism

3)Increased destruction

(hemolytic anemia)

- □ Extrinsic factors(infection, antibody,mechanical)
- □Intrinsic RBC abnormalities:
- 1)Hereditary (membrane, enzyme, Hgabnormalities)
- 2)Acquired (Paroxysmal nocturnal hematuria)

BM produces RBCs but they are abnormal so they die early/immaturely and thus there will be shortage of RBC in circulation

That's mean RBC undergo premature destruction instead of complete their normal lifespan.

We examine anemia according to the morphology in the blood film (remember! Diagnosed through numerical tests)

CLASSIFICATION ACCORDING TO MORPHOLOGY BLOOD FILM

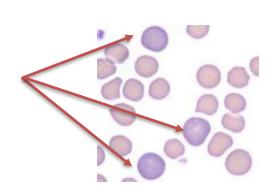
RBC is a bit smaller than lymphocyte nucleus

- ☐ Size of RBC: normo, micro, macrocytic (MCV)
- □ Color: normo, hypochromic (MCH) or hyper chromic by examining the central(thin)one third of RBC which allows light to pass through it, it will appear white.

And I can know without checking them by complete blood count that they give MCV...RBC HAVE NORMAL RANGE FROM 80 TO 100 fL... if it's less than $80 \rightarrow$ micro ...if more than $100 \rightarrow$ macro and if it's between $80\text{-}100 \rightarrow$ normo

- Shape: anisopoikelocytosis different shape and siz (spherocytes, sickle, schistiocytes)
 (RBC distribution width)
- ☐ Hypochromic microcytic anemia usually reflects impaired Hg synthesis Hg consist of heme group(iron) and globin(protein from DNA)
- Macrocytic anemia reflects stem cell disease (in bone marrow) and maturation

It's very early disease...they can't mature enough like RBC



RBC INDICES

- Can be directly measured, or automated
- Slight variation is present between labs, geographic areas
- ☐ Sex, age, race, mobility status have effect
- Reticulocyte count: helps differentiate hemolytic anemia (high) from aregenerative anemia (low)

د. طارق العديلي

These are
Reticulocyte
they are large
and blue in
color because
of streaks of
DNA so you
can count
them from
blood film

See the next slide

			See the next	
		Units	Men	Women
	Hemoglobin (Hb)	g/dL	13.2-16.7	11.9-15.0
	Hematocrit (Hct)	%	38-48	35-44
_	Red cell count	×106/μL	4.2-5.6	3.8-5.0
Ť	Reticulocyte count	%	0.5-1.5	0.5-1.5
	Mean cell volume (MCV)	fL	81-97	81-97
	Mean cell Hb (MCH)	pg	28-34	28-34
	Mean cell Hb concentration (MCHC)	g/dL	33–35	33–35
	Red cell distribution width (RDW)		11.5–14.8	

*Reference ranges vary among laboratories. The reference ranges for the laboratory providing the result should always be used in interpreting a laboratory test.

Reticulocyte count: helps differentiate hemolytic anemia (high) from aregenerative anemia (low)

Reticulocyte is an immature RBCs without nucleus. The differences between it and the mature RBCs; its size (is larger) and has streaks of residual DNA.

It is found in bone marrow and in peripheral blood, it's life as Reticulocyte is one day and then it will become a mature RBC.

The normal percentage of Reticulocytes is 1% if it's more this indicates that bone marrow is active and produce extra RBCs to compensate anemia (usually hemolytic anemia).

Anemia + reticulocytes \rightarrow healthy (functional) BM. {RBCs are the problem/cause} Anemia + x reticulocytes \rightarrow nonfunctional BM. {BM is the problem/cause}

CLINICAL FEATURES OF ANEMIA

General symptoms for anemia

- Dizziness (hypotension) In polycythemia hypertension

 Fatigue Loss of energy and tiredness as a result of hypoxia of skeletal system

 Pallor In polycythemia plethora which is the skin is red in color We can examine the pall skin in highly vascular areas like finger nails, oral, lips and tongue to make sure the patient is pallor

 Headache

 Adaptive changes: the body tries to compensate the hypoxia

 Tachycardia High heart rate to make oxygen reach the body faster

 Tachypnea Rapidly breathing
 - Increased red cell 2,3-diphosphoglycerate
 Remember the biochemistry lecture
 If the patient has heart or lung diseases, symptoms will be worse

CLINICAL SYMPTOMS IN SPECIAL TYPES OF ANEMIA

☐ Chronic hemolytic anemia:

The RBCs are degraded, the concentration of hemoglobin will increase and will be metabolized into bilirubin (it's an insoluble compound elimenated through the biliary system), if the concentration of bilirubin is increased the liver can't handle it and will be deposited in the tissues.

jaundice, pigmented gall bladder stones, redurine

The sclera of the eye will be yellow

insolubility of bilirubin it will accumulate in the biliary system and cause black bile

stones

Because of the

The hemoglobin will reach the kidney and will go with so its color will be red like blood

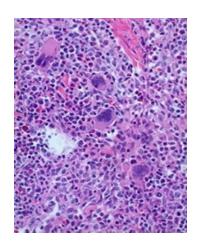
CLINICAL SYMPTOMS IN SPECIAL TYPES OF ANEMIA

- Extramedullary hematopoiesis: splenomegaly, hepatomegaly
- Thalassemia major and sickle cell anemia: (they are Congenital life long disease) the concentration of erythropoietin is chronically high which leads to extramedullary hematopoiesis, the patients are children because it's Congenital.

Persistent hypoxia even high erythropoietin can't reverse it, it's genetic, the body can't make Hg, it's persistent anemia.

growth retardation, bone deformity especially face bones they are protruded and large regarding to increase erythropoietin so the bone marrow will increase.

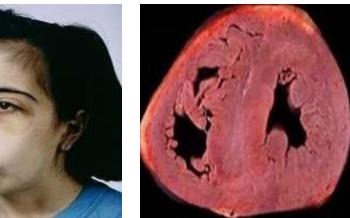
secondary hemochromatosis the cure is blood transfusion to


increase blood concentration and decrease the hypoxia. as we know the

blood contains iron and it's difficult to rid from, so the only method is to shed epithelial cells, because if the iron accumulates in the tissues, it becomes toxic and causes

damage to heart (cardiomegaly as a result of hemochromatosis), endocrine glands (any gland can destroyed by iron)

Large abdomen due to hepato/splenomegaly. Growth retardation; they're short. Skeletal deformities.



Bone biopsy;

Faculty of Medicine

erythropoeitic cells.

Very thick wall

Sudden

ANEMIA OF ACUTE BLOOD LOSS

Symptoms are related to decreased intravascular volume,

If loss is > 20% of blood volume, patient might

have hypovolemic shock especially vital organs like brain, kidney they suffer from ischemia and death

Body responds by shifting fluid from interstitial to intravascular space, causing dilutional anemia which cause decreasing in the concentration of hemoglobin and worse hypoxia (stays 2-3 days)

Erythropoietin secretion is stimulated, activating BM erythropoiesis (needs 5-7 days)

Iron is difficult to gain (the absorption is limited) and difficult to get rid of so if hemorrhage happened:

In internal hemorrhage, iron is restored from extravasated RBCs and used again in erythropoiesis

In external and GIT hemorrhage, iron is lost, and the patient will develop iron deficiency which complicates anemia and it takes a lot of time to appear culty of Medicine

The anemia is normochromic normocytic, with reticulocytosis

ANEMIA OF CHRONIC BLOOD LOSS

Loss of small amount of blood but it is repeated

- □Occurs when the rate of RBC loss exceeds regeneration
- ☐ Mostly occurs in gastrointestinal diseases, also in excessive menstruation
- □ Results in iron deficiency, anemia appears hypochromic and microcytic (depletion in iron stores → anemia starts to fully develop), low reticulocytes also due to ↓ iron stores, the BM can't produce RBCs.

Causes of hemorrhage in gastrointestinal diseases:

Peptic Ulcers, stomach and esophagus cancers, hemorrhoids,

Pathology Quiz

shutterstock.com · 1751596670

For any feedback, scan the code or click on it.

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
	16	No quiz	Added quiz
V0 → V1		د. طارق العديلي	
		Faculty of Medicine	
V1 → V2			