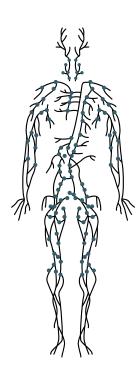


Pharmacology

Final | Lecture 1

﴿ وَقُل رَّبِ أَدْخِلْنِي مُدْخَلَ صِدْقِ وَأَخْرِجْنِي مُخْرَجَ صِدْقِ وَٱجْعَل لِي مِن لَّدُنكَ سُلْطَانًا نَصِيرًا ﴾ ربنا آتنا من لدنك رحمة وهيئ لنا من أمرنا رشدًا

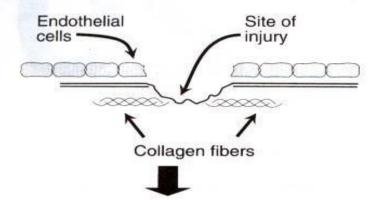

Antiplatelets

Written by: Bisher Khashashneh
Qais Alqaisy

Reviewed by: Abdulrahman

Khw

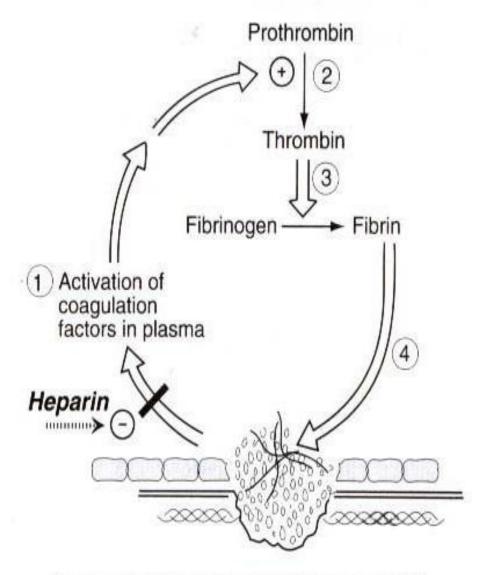
To orient you


- The body maintains homeostasis through balanced opposing systems, like the sympathetic and parasympathetic.
 Similarly, in hemostasis, there's a balance between coagulation factors and natural anticoagulants such as antithrombin III, protein C, and protein S.
- During injury, the body shifts toward coagulation to stop bleeding, then back to anticoagulation to prevent unwanted clots. This balance between thrombosis and bleeding is crucial and is often targeted in treating MI, stroke, DVT, PAD, and other occlusive diseases, which are common in our region due to hypertension, diabetes, and smoking affecting coagulation.

Drugs Used in Clotting Disorders

Reduce clotting

- Antiplatelets (5 drugs)
 - > Antiplatelets are a prophylactic drugs that prevent the segregation of the platelets.
- Anticoagulants (10 drugs)
 - > Anticoagulant dissolve clots physiologically by targeting the antithrombotic response to the site of thrombosis in a certain way.
- Thrombolytics (2 drugs)
 - > Such as life-saving injections (ابرة الحياة) that **dissolve all clots in the body**, but carry a high risk of **bleeding** and are used in **life-threatening** situations such as myocardial infarction.
- Facilitate clotting (1 drug)
 - > Through drugs that **promote coagulation**, used in **sports injuries**, **dental procedures**, and to **control menstrual bleeding** (available as oral tablets).


Damage to vessel exposes collagen of subendothelium

Platelet adhesion and release of granules

Platelet aggregation and formation of fibrin plug

Explanation of the picture in the next slides

Explanation of the previous slide

- To maintain normal blood flow and prevent clot formation on the vessel wall, endothelial cells secrete anticoagulant substances such as nitric oxide (NO) and prostaglandins.
- However, when a blood vessel is damaged or ruptured—for example, due to atherosclerosis (see slide 7)—the exposed collagen binds to the von Willebrand factor (vWF). The vWF then links platelets to the collagen via their vWF receptors, initiating platelet adhesion and aggregation.
- This platelet-collagen interaction increases intracellular calcium levels within platelets, triggering degranulation and the release of substances like ADP and thromboxane A2 (TXA2), which promote further platelet activation and aggregation.
- Both ADP and TXA2 act as autocrine activators—they bind to receptors on platelets, reinforcing their activation, secretion, and aggregation, ensuring a rapid and strong platelet response.

Explanation of the previous slide (Cont'd)

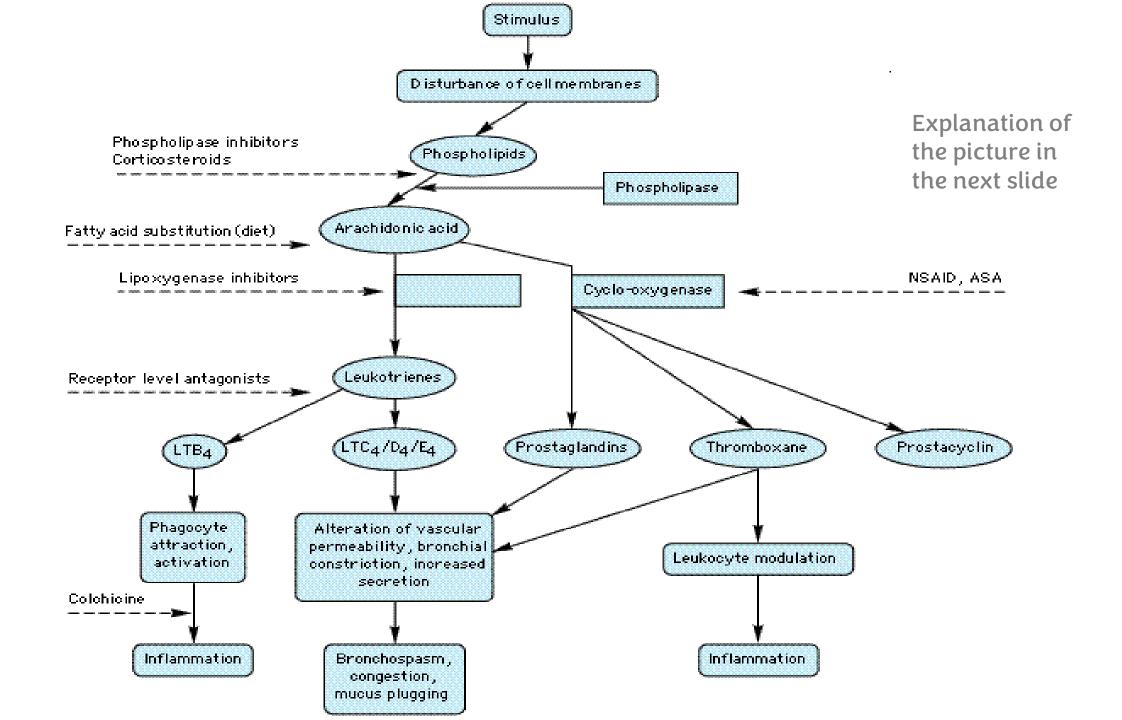
- There is an increase in the number or activation of ADP receptors (P2Y12) on platelets. Meanwhile, thromboxane A2 (TXA2) is produced from arachidonic acid in the platelet membrane via the cyclooxygenase (COX) pathway.
- This process also promotes the appearance of fibrinogen receptors on the platelet surface. Fibrinogen then binds platelets together by cross-linking glycoprotein IIb/IIIa, forming a platelet plug, which is later stabilized by a fibrin mesh.
- Several drugs target this pathway: for example, aspirin inhibits TXA2 production, while other drugs block P2Y12 receptors (preventing ADP binding) or glycoprotein IIb/IIIa to reduce platelet aggregation.

Plaque Fissure or Rupture

Platelet Adhesion

Platelet Activation

Platelet Aggregation


Thrombotic Occlusion

Platelet Inhibitors

- These drugs prevent platelet activation.
- (1) Inhibition of prostaglandin synthesis (aspirin),
- (2)Inhibition of ADP-induced platelet aggregation (Ticlopidine, Clopidogrel, Prasugrel, Cangrelor, Ticagelor),
- (3)blockade of glycoprotein IIb/IIIa receptors on platelets (abciximab, tirofiban, and eptifibatide).
- (4) phosphodiesterase inhibitor (Dipyridamole ?? and cilostazol)
 - > cAMP levels in platelets increase, which inhibits degranulation due to the inverse relationship between cAMP and platelet activation.
- (5) There are also new drugs in development that block vWF receptors. (not important for now)

Aspirin

- MOA: Blocks COX \rightarrow inhibits conversion of AA into TXA₂.
 - The main difference between **aspirin** and other **NSAIDs** is that **aspirin binds irreversibly** to the **COX enzyme**. This gives it **strong effects** (e.g., on platelet inhibition and heat regulation) but also **more side effects**. Because of its irreversible action, **low-dose "baby aspirin"** can be used for **anticoagulation**, unlike other NSAIDs, which bind reversibly.
- Indications: -prophylactic in transient cerebral ischemia.
 - -to reduce recurrence of MI.
 - -in angina.
- A daily dose of 100 mg is enough to produce anticoagulation due to irreversible binding COX pathway.
- Adverse effects: hemorrhagic stroke, GIT bleeding.
 - > Aspirin is used usually in **prophylaxis**

Explanation of the previous slide

- Adverse effects of aspirin occur mainly through inhibition of prostaglandin synthesis, which normally protects the stomach lining. This can worsen peptic ulcers, so aspirin is contraindicated in patients with ulcer disease.
- Aspirin blocks the COX pathway, but the lipoxygenase pathway remains active, producing leukotrienes that can cause inflammation and bronchospasm. Therefore, it is contraindicated in asthma patients.
- In patients under 19 years old with viral infections, aspirin carries a risk of Reye's syndrome.
- Aspirin is used as prophylaxis in patients needing platelet protection, such as those with angina or a history of MI or stroke. However, in high-risk patients, aspirin alone is insufficient, and dual antiplatelet therapy is recommended (see next slide).

Ticlopidine & Clopidogrel

- Useful in patients who cannot tolerate aspirin or who failed aspirin.
- MOA: <u>block ADP receptors</u> on platelet.
- Indications:
- -prevent vascular events in patients with transient ischemic attacks (TIA)
- -unstable angina.
- -prevent thrombotic stroke.
- -to prevent thrombosis in patients undergoing placement of a coronary stent.

Ticlopidine & Clopidogrel

Adverse effects:

Ticlopidine has a higher risk of adverse effects compared to newer alternatives and is therefore rarely prescribed today.

- Hemorrhage
- <u>Leukopenia</u>: should monitoring WBCs during the <u>first 3</u> months.
- Thrombotic thrombocytopenic purpura (TTP) (See next slide)
 - > 3 per 100 patients

Clopidogrel - fewer than with ticlopidine (Safer than Ticlopidine)

- Neutropenia.
- TTP 4 per 1 million
- Mild bleeding

These rare cases are often due to **genetic differences**, such as **single nucleotide polymorphisms (SNPs)**, which affect individual responses to drugs.

Thrombotic thrombocytopenic purpura (TTP)

(Causes thrombosis) (Low platelets count) (Purple-bluish skin color)

- Ticlopidine's selectivity isn't absolute. In **3% of ticlopidine-treated patients**, it can bind to an enzyme called **ADAMTS13**, inhibiting it. This enzyme normally cuts **von Willebrand Factors (vWF)** to keep them in check. When inhibited, large vWFs accumulate, **exerting their platelet-aggregation effects excessively**, leading to clot formation in various places.
- Early on, it affects **small blood vessels** like those in the arms and legs, later affecting **renal and coronary arteries**, eventually leading to death. This can cause areas of **bluish or purple color** due to blockade. As many clots form, the number of **free platelets** decreases, hence the "thrombocytopenic" part.

Ticlopidine & Clopidogrel

- Dose:
- -Ticlopidine: 250 mg BID orally.
- -Clopidogrel: oral loading dose 300 mg, maintenance dose 75 mg once daily.
- Because of less side effects & more convenient dosing with clopidogrel, it is preferred over ticlopidine

The Drug

Adverse effects or some info

- Cangrelor (Kengreal) IV (not a prodrug)
- Clopidogrel (Plavix)
 Prodrug ??????
- Prasugrel (Effient) bleeding
 - Hypertension (8%), hypotension (4%), atrial fibrillation (3%), bradycardia (3%),
- Ticagrelor (Brilinta) not a prodrug bleeding shortness of breath (dyspnoea)
- Ticlopidine (Ticlid) not any more (due to TTP)

(See next slides for more explanation)

- Some of these treatments are **prodrugs** (**clopidogrel**, **prasugrel**). They need **activation** in the **liver**. So they are **contraindicated** for those with **liver failure**. And more specifically for those with **impaired** <u>CYP2C19</u> enzyme (Clopidogrel is especially more sensitive than the other 2 by deficiencies in this enzyme) which could be the result of mutations in the responsible gene.
- In Jordan, approximately **0% of people have a deficiency in both alleles**, making them **"poor metabolizers"** for this drug. About **12% have a deficiency in only one allele**, called **"intermediate metabolizers"**. Those with **both normal alleles** are **"normal metabolizers"**.
- Similarly, single nucleotide polymorphisms (SNPs) can produce "ultra-rapid metabolizers". The drug is contraindicated for poor metabolizers, the dose is doubled for intermediates, and given normally for ultra-rapid metabolizers, since clopidogrel generally does not pose significant risk even with rapid activation.

- We can assess a patient's **clopidogrel metabolizer type** using either **PCR** (which takes longer) or a **platelet function test** ("anti-plate"). This test uses the patient's blood under conditions that allow coagulation, with the drug added, to evaluate its **potential efficacy**. For example:
 - Normal metabolizer: clotting takes longer (drug works)
 - Poor metabolizer: blood coagulates normally (drug ineffective)
- The test can also be done by taking a blood sample after the drug has been administered, typically hours before a procedure requiring P2Y12 inhibition, to ensure efficacy. For procedures like coronary stent placement, the metal stent acts as a foreign surface inside the artery. This triggers platelet activation and aggregation, which can quickly form a clot (stent thrombosis) a lifethreatening event. So patients are "prepared" hours in advance with loading doses of clopidogrel, cangrelor, or prasugrel until a steady state is achieved.

Cangrelor

- Has a very short half-life (~2.5 minutes), so it is given as an IV drip rather than a bolus to maintain effect.
- Used in emergencies where "preparing" isn't possible, since it doesn't need preparation.

Clopidogrel

- The most used.
- Requires preparing hours before procedures to ensure efficacy.

Prasugrel

- Given for a patient **after stent**, for a patient who is a **poor metabolizer for Clopidogrel**, or when there is **time to prepare for surgery**.
- Has higher bleeding risk than Clopidogrel.
- Used for up to one year.

Ticagrelor

- Considered safest, but also has high bleeding risk.
- Causes dyspnea and is taken twice a day.

Additional note: Both Cangrelor and Prasugrel are expensive.

Warning

 Clopidogrel was issued a black box warning from the FDA on 12 March 2010, as the estimated 2–14% of the US population who have low levels of the CYP2C19 liver enzyme needed to activate clopidogrel may not get the full effect. Tests are available to predict if a patient would be susceptible to this problem or not

Abciximab, eptifibatide, & tirofiban.

Glycoprotein IIb/IIIa inhibitors:

- > (GP 2b/3a) is surface receptor (integrin) on platelet cells that binds fibrinogen and vWFs (bridging) enabling platelet aggregation.
- **Abciximab** (was used before clopidogrel) is a humanized monoclonal antibody directed against IIb/IIIa complex.
 - > Irreversible binding (impairs function), much higher risk of bleeding even higher than all P2Y12 inhibitors (very strong).
- Eptifibatide & Tirofiban inhibit ligand binding to IIb/IIIa receptor by their occupancy of the receptor acting as competitive inhibitors.
- → All Inhibit bridging of platelet by <u>fibrinogen</u>.
- Approved for use in percutaneous coronary intervention (PCTA) & in ACSs.
- The three agents are administered parenterally

Dipyridamole:

MOA: -inhibits phosphodiesterase → ↑ cAMP → potentiates effects of prostacyclin → platelet inhibition.

-dipyridamole is also a coronary vasodilator.

- cAMP activates PKAs and reduces cytoplasmic Ca++ in platelets and smooth muscles, **inhibiting platelet aggregation and acting as a vasodilator** for smooth muscles—so **two effects**, **not just one**.
- Dipyridamole inhibition is often complemented with other drugs so that we have desired effect, since its effects alone are not enough. Doctor called such drugs "add-on" drugs; you complement them with other supporting drugs.
 - Indications:-with aspirin for prophylaxis in angina.

-with <u>warfarin</u> to inhibit embolization from prosthetic heart valves.

Cilostazol

intermittent claudication

Pharmacology Quiz 1

For any feedback, scan the code or click on

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			
V1 → V2			