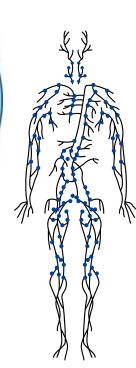


Physiology

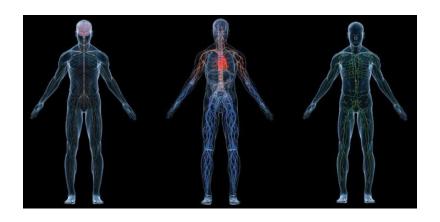
MID | Lecture 1

Blood Introduction


Written by: Mohammad

Khazaleh

Reviewed by: Laith Joudeh



Chapter 33

GUYTON AND HALL TEXTBOOK OF MEDICAL PHYSIOLOGY

Introduction: Red Blood Cells, Anemia and Polycythemia

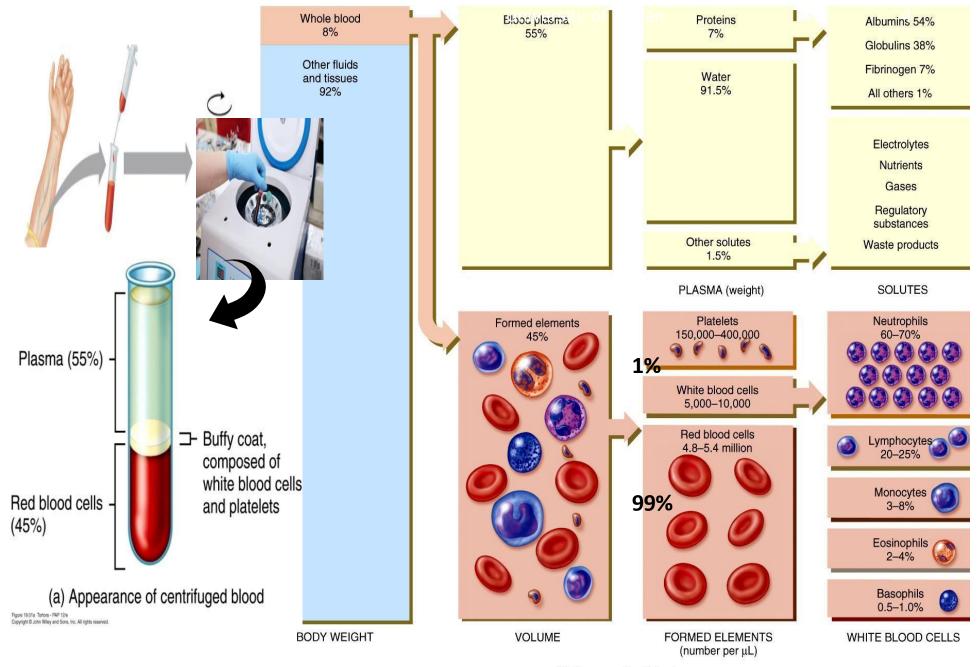
Ebaa M Alzayadneh, PhD

Learning Objectives

- Identify blood components (formed elements), their main characteristics and functions.
- Understand genesis of blood cells (hematopoiesis)
- Describe regulation red blood cells production
- Identify requirements for erythropoiesis
- Describe red blood cells cycle
- Define abnormalities of red blood cells

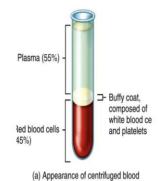
Functions of Blood

- Transportation of:
 - O₂ by hemoglobin in RBCs
 - CO₂ from cells to the lungs for elimination
 - Nutrients to body tissues
 - Wastes to organs that deal with wastes such as the liver and the kidney
 - Hormones to their target organs


Functions of Blood

- Regulation of:
 - pH: Blood contains buffers that resist changes in pH. Proteins, such as Hemoglobin, in red blood cells act as buffers by accepting or donating H⁺ ions.
 - pH must remain within a narrow range because enzymes require an optimal pH to function normally. Deviations cause acid-base disorders.
 - Temperature: Blood vessels near the skin dilate in response to heat (vasodilation) and constrict in cold (vasoconstriction) to regulate body temperature.
 - Blood Pressure: Results from the force exerted by circulating blood against the walls of blood vessels. Blood volume is directly proportional to BP — as blood volume increases, BP also rises.
 - Osmotic Pressure: Blood proteins, mainly albumin, exert oncotic pressure that pulls fluid back into the capillaries, helping maintain fluid balance.
 - Volume

Functions of Blood


Protection:

- Clotting: In case of injury, blood initiates a coagulation mechanism involving platelets, which aggregate and help stop bleeding.
- Immune: Protection against microbes.
- Proteins: Some blood proteins act as carriers, safely transporting potentially harmful substances through the bloodstream.

(b) Components of blood

Composition and Separation of Blood Components

- The Composition of Blood:
 - Blood is drawn by puncturing a vein, a process known as venipuncture (phlebotomy).
 - The blood sample is centrifuged before clotting, separating its components by density into three layers:
 - Bottom layer (≈45%) Red blood cells (RBCs), which have the highest density.
 - Middle thin whitish layer White blood cells (leukocytes) and platelets, together with RBCs known as the formed elements.
 - Top yellowish layer (≈55%) Plasma, a clear fluid that makes up most of the blood volume.
 - If clotting occurs, some plasma components such as fibrinogen become trapped in the clot, and the remaining fluid is called serum.
 - Serum = Plasma (fibrinogen + clotting factors).

Composition and Separation of Blood Components:

• Plasma:

- 1. Water (≈91.5%)
- 2. Proteins (≈7%)
 - Albumins (≈54%)
 - Globulins (≈38%)
 - Fibrinogen (≈7%)

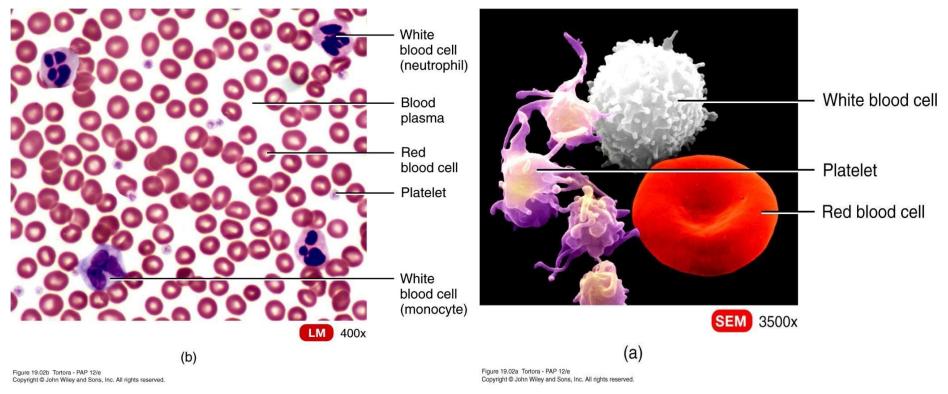
3. Other Solutes:

- Gases: O₂, CO₂, NO
- Electrolytes: Mainly Na⁺ and Cl⁻
- Nutrients: Glucose, amino acids, lipids
- Regulatory Substances: Hormones, enzymes
- Waste Products: Urea, uric acid, ammonia

Formed Elements:

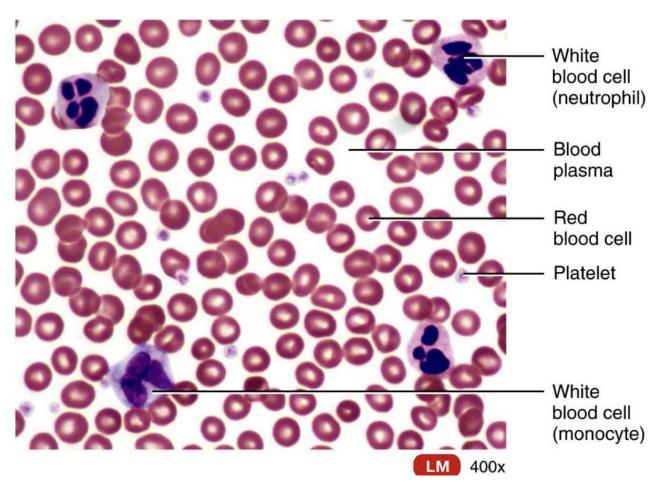
- Red Blood Cells (RBCs) ≈99% of formed elements
- **2. Platelets Cell fragments**, not complete cells, involved in **clotting**
- 3. White Blood Cells (WBCs / Leukocytes):
 - Neutrophils: 60–70% (predominant under normal conditions)
 - Lymphocytes: 20–25%
 - Monocytes: 3–8%
 - **Eosinophils:** 2–4%
 - **Basophils:** 0.5–1%

Blood Physical Characteristics

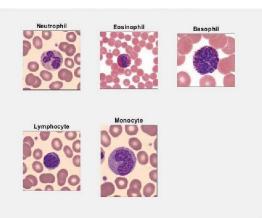

- 38°C
- Viscous sticky
- Alkaline pH (7.35-7.45)
- Color depends on O₂ (bright-dark) red
- 20% of ECF, 8% by weight
- Blood volume: 5-6 males, 4-5 females | Depends largely on body size
- The volume of blood is regulated hormonally by:
 - RAAS (Renin-Angiotensin-Aldosterone System): Increases blood volume and pressure by promoting sodium and water retention.
 - ADH (Antidiuretic Hormone): Prevents water loss by increasing water reabsorption in the kidneys.
 - ANP (Atrial Natriuretic Peptide): Decreases blood volume and pressure by promoting sodium and water excretion.

Question: Are all blood sampling tubes the same? And procedures.

- Blood Collection Tubes:
 - ➤ Venipuncture
 - Finger or heel stick
 - >Arterial stick
- Tubes differ based on the additives they contain.
- Some tubes are plain (without additives), while others contain anticoagulants such as EDTA or heparin to prevent coagulation.
- The choice of tube depends on the type of blood test being performed:
 - A. To obtain **serum**, use a **plain tube** (no additives).
 - B. To obtain plasma, use a tube containing an anticoagulant to prevent clotting


Formed Elements of Blood

Blood: a liquid connective tissue, Extracellular matrix is plasma, cells are suspended.


Interstitial fluid: part of ECF renewed by blood

Formed Elements of Blood RBCs, WBCs and platelets

- Observation under the Light Microscope:
- The most abundant cells seen are red blood cells (RBCs).
- The small fragments present are platelets.
- The larger cells with distinct nuclear shapes are white blood cells (WBCs):
 - Monocytes have a kidney-shaped nucleus.
 - Neutrophils have a multilobed (polymorphonuclear) nucleus.
 - Lymphocytes have a large nucleus that occupies most of the cell.

Extra image to see the lymphocyte

Interstitial Fluid and Blood Interaction:

- The interstitial fluid interacts with blood through continuous exchange and transport processes.
- It is constantly renewed and modified by substances from the blood plasma.
- At the same time, a portion of the interstitial fluid returns to the bloodstream, maintaining a dynamic equilibrium between the two main components of the extracellular fluid (ECF):
 - Blood plasma
 - Interstitial fluid

Functions of Red Blood Cells (Erythrocytes)

- Carry hemoglobin, bearing O₂ to the tissues
- Contain carbonic anhydrase, which catalyzes the reaction:

$$CO_2 + H_2O \rightarrow H_2CO_3$$

- Allows large amounts of CO₂ to be carried in solution as HCO₃⁻
- Hemoglobin is an excellent acid-base buffer, by donating or accepting
 H⁺.

CO₂ Transport via Bicarbonate (HCO₃⁻):

- Once produced, carbonic acid (H2CO3) dissociates into H⁺ and bicarbonate (HCO3⁻).
- 2. HCO₃⁻ serves as the main form of CO₂ transport in the blood.
- 3. The conversion of CO₂ to HCO₃ occurs inside red blood cells through the enzyme carbonic anhydrase.
- 4. HCO3⁻ then moves out of RBCs in exchange for Cl⁻ ions, a process called the chloride shift.
- 5. In the pulmonary capillaries, HCO3⁻ reenters the RBCs, recombines with H⁺ to form H2CO3, which is then converted back into CO2 and H2O.
- 6. The CO2 is exhaled through the lungs.

RBC Size and Shape

- Biconcave discs: The biconcave shape results from a redundant plasma
 membrane and the absence of a nucleus. This unique shape, together with the
 flexible membrane, increases the deformability and flexibility of red blood cells.
 It allows them to squeeze through very narrow capillaries without rupturing.
- Mean 7.8 (diameter) x 2.5 microns (thickest) or x 1 micron (center)
- Average volume 90-95 micrometers³
- Question: Why is hemoglobin contained inside red blood cells (RBCs) rather than circulating freely in the plasma?
 - Answer: If hemoglobin were free in the plasma, it could leak into the
 interstitial space, causing a significant loss of hemoglobin. Moreover, free
 hemoglobin would be filtered out by the kidneys, leading to hemoglobin loss
 in urine and possible kidney damage.

RBC Count and Indices

- Men: 5,200,000 (± 300,000)/mm³
- Women: 4,700,000 (± 300,000)/mm³
 - RBC counts can be increased at higher altitudes because the atmosphere contains less oxygen. To compensate for reduced oxygen availability, the body stimulates increased RBC production.
- 2 million/sec production
- RBC indices:
 - MCV (Mean cell volume) $90 \pm 9 \text{ fl} = 10^{-15} \text{ L}$
 - MCH (Mean Cell Hgb) 32 ± 2 pg
 - MCHC (Mean cell Hgb conc) 33 ± 3%
 - RDW CV 11.6-14.6%
 - It measures how much the sizes of red blood cells vary. Normally, the variation should be minimal.
 - (SD of MCV/MCV) 39-46 fL

Physiology Quiz 1

For any feedback, scan the code or click on it.

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1	Slide 8	Together known as formed elements	Together with RBCs known as formed elements
V1 → V2			

20