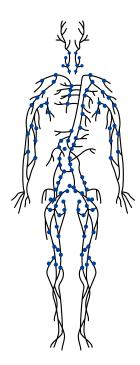


Physiology

Final | Lecture 11

Hemostasis & Blood Coagulation (pt.3) Clinical lab & Tests


﴿ وَقُل رَّبِ أَدْخِلْنِي مُدْخَلَ صِدْقِ وَأَخْرِجْنِي مُخْرَجَ صِدْقِ وَٱجْعَل لِي مِن لَّدُنكَ سُلْطَانَا نَصِيرًا ﴾ ربنا آتنا من لدنك رحمة وهيئ لنا من أمرنا رشدًا

Written by: Abdulrahman Khw Zaid Bassam

Mahmoud Aljunaidi

Reviewed by:

Clinical Perspective Physiology/Hemostasis

Ebaa M Alzayadneh, PhD Associate Professor of Physiology

Causes of Excessive Bleeding

 Any clotting factor deficiency leads to deficient hemostasis and prolonged bleeding.

Most commonly:

- Hepatocellular disease.
- Vitamin K deficiency slide 4.
- Hemophilia slide 6.
- Low platelet count (thrombocytopenia) slide 8.

Vitamin K Deficiency

- Vitamin K is essential to carboxylate glutamic acid in five important clotting factors; therefore, it serves as an important cofactor for the synthesis of:
 - Prothrombin, in the liver, and factors VII, IX, X, and protein C (1972).
- In this process vitamin K is oxidized and inactivated.
- Vitamin K epoxide reductase complex 1 (VKOR c1) reduces vitamin K and reactivates it.
- Both vitamin K production in the small intestine and the activity of the enzyme VKORC1 are essential for the normal synthesis of prothrombin and other vitamin K-dependent clotting factors.

Vitamin K

- Produced in the intestine by bacteria.
 - ➤ Vitamin K deficiency is rare in adults but relatively common in newborns, as their intestinal flora is not yet fully developed.
- Causes of vitamin K deficiency:
 - It's Fat-soluble: malabsorption of fats can lead to deficiency.
 - Remember fat-soluble vitamins: A, K, D and E.
 - Lack of bile production or delivery can cause fat malabsorption and vitamin K deficiency
 - In patients with **liver or biliary disease** such as viral diseases and hepatitis, vitamin K can be injected 4-8 hours before surgery.

Hemophilia

- One of the most studied **bleeding disorders**, it has two types both leading to excessive bleeding:
 - Hemophilia A Deficiency of factor VIII, previously called anti-hemophilic factor.
 - 85% of hemophilia cases
 - It's more common in males, 1 / 10,000 males.
 - 2. Hemophilia B Deficiency of factor IX
 - 15% of cases
 - About 1 / 60,000 males.
- Both impair Intrinsic Pathway activation, to which factors VIII and IX are needed.
- Both genes are on the **X** chromosome. Because males only get **one copy** of the X chromosome, they are **more susceptible** to developing the disorder.
- Clinically: excessive bleeding after minor trauma.

Factor VIII Deficiency

- Factor VIII has a partner von Willebrand factor (vWF).
- Deficiency of factor VIII causes hemophilia A. Which results in excessive bleeding upon injury, treat bleeding with factor VIII replacement.
- Deficiency of Von Willebrand factor causes von Willebrand disease, which resembles decreased platelet function.
- **Treatment** is always with the **deficient factor** or in emergencies– with **fresh frozen plasma**, which contains both factors, factor VIII and vWF.

Thrombocytopenia

- Definition: Low numbers of platelets.
- Bleeding from small venules or capillaries, unlike hemophilia, where bleeding occurs in large vessels.
- Causes Petechiae, thrombocytopenic purpura*.
 - > Petechiae: Tiny red or purple spots on the skin caused by minor capillary bleeding.
- Often idiopathic, unknown cause.
- Severity based on platelets counts:
 - < 50,000 platelets / μL usually modest bleeding.</p>
 - < 10,000 platelets / μ L life-threatening.
- Treated with **platelet infusions**, which is effective for 1 4 days each time.

* Larger purple patches on the skin due to extensive capillary bleeding under the skin.

Thrombi and Emboli

- An abnormal/unwanted clot is a thrombus.
- When it dislodges, it floats in the bloodstream, therefore it's an embolus.
- **A** Caused by:
 - Endothelial surface roughening (e.g. atherosclerosis).
 - Slow blood flow (e.g. prolonged air travel).
- Treatment:
 - tPA, tissue Plasminogen Activator.
 - ightharpoonup A drug that breaks down blood clots quickly by converting plasminogen \rightarrow plasmin, which dissolves fibrin in the clot.
 - Embolectomy.

Pulmonary Embolus

- A critical condition that usually occurs from a thrombus in deep leg veins.
- Part of thrombus disengages (~10% of the time), and travels to the pulmonary arteries. Where it can Occlude pulmonary arteries.
- If it blocks the blood supply to a large area of the lung, it is potentially fatal.

• tPA can be life-saving, by applying it through catheters within one hour

to dissolve and remove the clot.

Disseminated Intravascular Coagulation (DIC)

- Another serious condition that commonly occurs alongside septic shock.
- Occurs in the setting of massive tissue damage or sepsis.
 - > Septic shock triggers wide-spread inflammation and endothelial injury. This can activate the **coagulation cascade**, leading to **DIC**.
- The coagulation cascade can cause a wide-spread coagulation in small vessels and the resulting blockage of blood flow to tissues may contribute to circulatory shock.
- Also, it manifests as bleeding from multiple sites because of depletion of clotting factors because of the wide-spread coagulation.

Clinically Useful Anticoagulants

Heparin

- Binds, potentiates **antithrombin III**, an inhibitory protein, and also affects the function of other clotting factors.
- Works rapidly, generally used acutely.

Coumarins

- Oral medication.
- **Inhibit VKOR c1,** the enzyme necessary for vit. K reactivation.
- Deplete active vitamin K → deplete active prothrombin, factors VII, IX, X → slower clot formation and increase bleeding tendency.
- **Slower acting,** takes days to deplete already the present factors; used **chronically**, action stays for 1-3 days after cessation of treatment.
- Over-anticoagulation Treat with FFP and vitamin K supplements.

Outside the body

In vitro Anti-coagulation

- Siliconized containers prevent activation of factor XII and platelets.
 - They prevent blood from clotting by **inhibiting** any surface interactions that could activate **the intrinsic pathway**. The smooth silicone surface ensures that the blood remains stable and non-reactive during handling or transport.
- **Heparin** used in blood collection, heart-lung and kidney machines.
- Calcium chelators (citrate, EDTA) used in blood collection, blood storage.
 - Oxalate can prevent clotting, but citrate is preferred because it's safer and less toxic.
 - > It binds calcium to keep the blood from clotting, and later the liver can remove it, so it doesn't accumulate.
 - EDTA also works by binding calcium, but it's <u>not</u> used for plasma collection, only in specific blood tubes for tests.

Blood Coagulation Tests

Now rarely used due to poor reliability.

Clotting

Clotting time

- Invert tube every 30 seconds
- Normally 6 10 minutes
- Not reproducible, high variability, generally not used

Bleeding

Bleeding Time (from small cut)

- normally 1-6 minutes
- Largely reflects platelet function

Bleeding time

- A <u>bleeding time</u> is used to evaluate the second phase of hemostasis, which involves adherence of the platelets to the injured vessel, platelet activation and aggregation (formation of a plug).
- ✓ The time measures how long it takes for a platelet plug to form.
- ✓ It increases when the platelets count is low (thrombocytopenia), <u>platelet</u> function is abnormal or with the use of aspirin.
 - Aspirin acts as an anticoagulant because it blocks the synthesis of prostaglandins and thromboxane A₂, which are normally required for platelet activation and aggregation.
- Disadvantages: Insensitive, Invasive & operator dependent.
- Advantages: A simple good test to evaluate the platelet's function and structural abnormalities.

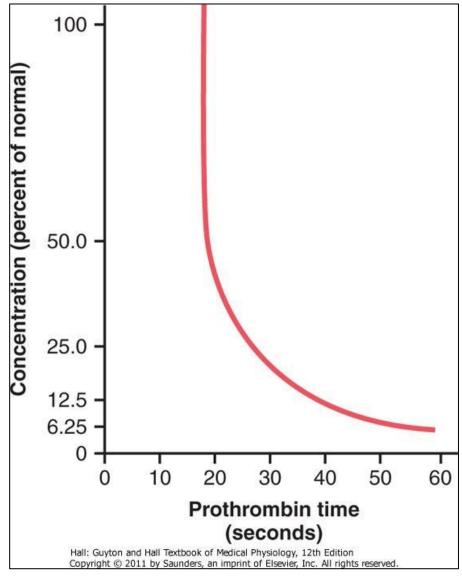
The Duke Method

- **1. Clean** the tip of the finger or the earlobe with alcohol.
- **2. Puncture** the skin with a special lancet. The wound should be 3-4 mm deep.
- 3. Wipe the blood drop by a filter paper every 30 seconds.
- **4. Repeat** until no more blood is absorbed by the filter paper. Which indicates a platelet plug has formed.
- 5. Multiply the number of blood drops by 30 seconds.
 - Or divide the number of spots of blood by 2, and that will give you the bleeding time in minutes.
 - Normal value: less than 5 minutes.

Clotting Time

- It measures the time required for a blood sample to coagulate in vitro. Clotting time depends on the availability of coagulation factors.
- Many techniques are used; the one we use in our lab depends on using non-heparinized capillary tubes.
- Clotting time is prolonged in conditions like hemophilia,
 vitamin K deficiency, liver diseases, and warfarin overdose.

Common Clotting tests


- Clotting is mainly assessed by:
 - Prothrombin Time (PT): Measures the extrinsic pathway and common pathway (factors I, II, V, VII, X).
 - mixing a sample of the patient's blood with a reagent that contains tissue factor and calcium.
 - Partial Thromboplastin Time (PTT): Measures the intrinsic pathway and common pathway (factors I, II, V, VIII, IX, X, XI, XII).
 - Calcium and activating substances are added to the plasma to begin the intrinsic pathway of the coagulation cascade. The activating substances such as kaolin, which activates the contact-dependent factor XII (hydrated aluminum silicate), and cephalin, which substitutes for platelet phospholipids.

Prothrombin Time

- Add excess calcium and tissue factor to oxylated blood, measure time to clot.
 - Blood is usually treated with citrate to prevent clotting. Calcium is added to activate clotting factors, along with tissue factor to trigger the extrinsic pathway.
- Assesses Extrinsic and Common Pathways.
- Usually about 12 seconds
 - If the clotting time is prolonged, it may indicate a problem with prothrombin activity or the effect of anticoagulant drugs.
- Tissue factor batches have to be standardized activity expressed as "International Sensitivity Index (ISI)"
 - Tissue factor (TF) is added to specifically activate the extrinsic coagulation pathway.
 - Because TF activity can vary between reagent batches, results are standardized using the International Sensitivity Index (ISI).
- The prothrombin time (PT) measures the time it takes to form thrombin, which then converts fibrinogen into fibrin, resulting in a stable clot.

Prothrombin Concentration and Function

- Prothrombin time (PT) can be used to **estimate the percentage of prothrombin** present in plasma.
 - > This is because the PT value correlates with the concentration of prothrombin.
- By measuring PT in seconds, we can assess the concentration of prothrombin in the blood, with higher PT values indicating a lower concentration of prothrombin and vice versa.
- This method allows detection of prothrombin deficiency or monitoring patients undergoing anticoagulant therapy, which can alter prothrombin levels.

International Normalized Ratio (INR)

$$INR = (rac{PT_{ ext{test}}}{PT_{ ext{normal}}})^{ISI}$$

- Normal INR: 0.9-1.3
- Therapeutic range: 2.0 3.0
- The calculation standardizes PT results between different labs and reagent sensitivities.

Interpretation:

- INR below normal (<0.9) \rightarrow tendency to clotting.
- INR above normal (>1.3) \rightarrow tendency to bleeding.

Clinical importance:

- INR is critical for:
 - 1. Monitoring patients with bleeding disorders.
 - 2. Adjusting anticoagulant therapy before surgery or during treatment.

Tests of Other Clotting Factors

 Mix the patient's plasma with a large excess of all needed components except the factor being tested.

 Compare time to coagulation with that for pooled plasma of healthy volunteers.

Summary: Bleeding and Clotting tests

Test Name	Assesses	Physiological Basis	Normal Range
Bleeding Time	Primary hemostasis	Platelet adhesion and aggregation	Less than 5 minutes (Duke method)
Prothrombin Time (PT)	Extrinsic & common pathways	Tissue factor activation of clotting cascade	~11–13.5 seconds
Partial Thromboplastin Time (PTT)	Intrinsic & common pathways	Contact activation of clotting cascade	~25–35 seconds

Physiology Quiz 11

For any feedback, scan the code or click on it.

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			
V1 → V2			