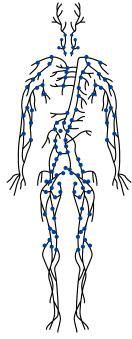


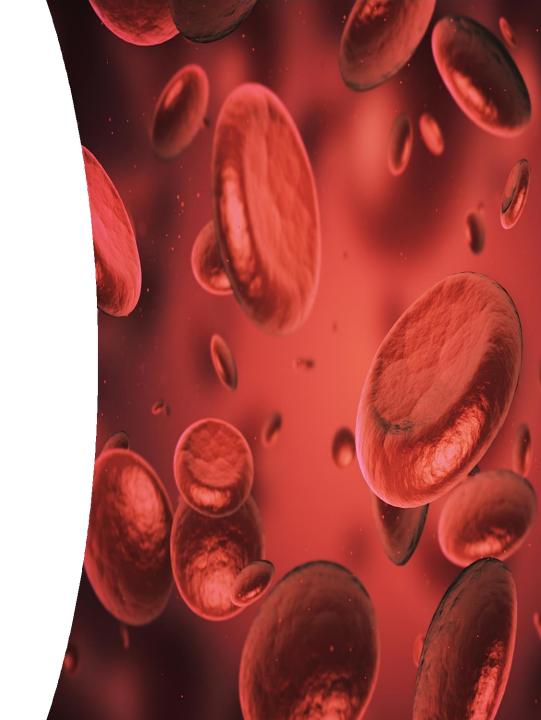
Physiology

MID | Lecture 4
Erythropoiesis
requirements (Pt.2) &
Anemia, Polycythemia
and Lab Tests


﴿ وَقُل رَّبِ أَدْخِلْنِي مُدْخَلَ صِدْقِ وَأَخْرِجْنِي مُخْرَجَ صِدْقِ وَٱجْعَل لِي مِن لَّدُنكَ سُلْطَنَا نَصِيرًا ﴾ ربنا آتنا من لدنك رحمة وهيئ لنا من أمرنا رشدًا

Written by: Maria Alrawi

Sara Abu-alhalawa


Reviewed by: Layan Fawarseh

Erythropoiesis
requirements Part II
Pathophysiology of
Anemia 2nd week
Lab tests Theory

Ebaa M Alzayadneh, PhD Associate Professor of Physiology

Anemias

(clinical application on erythropoiesis)

By definition: Deficiency of Hemoglobin (it can be due to: less number of RBCs or less hemoglobin in RBCs)

- Anemia can be due to Blood loss (acute, chronic).
- After hemorrhage, there are feedback mechanisms to restore blood volume as well as RBCs number:
- Fluid volume restored in 1-3 days, to restore blood volume; water is added to ECF with the arterial BP regulatory mechanisms
- RBC concentration restored in 3-6 weeks, erythropoietin is released 24h after hemorrhage, thus the first increase in new RBC production will be after 5 days, however restoring to normal RBCs concentration will take 3-6 weeks -in average 4 weeks-.

Anemias

 Chronic blood loss can lead to iron deficiency with hypochromic, microcytic anemia due to continuous increase in RBCs production that needs iron for hemoglobin (the absorption of iron from the GIT will not be enough), as a result we will have RBCs with less hemoglobin leading to hypochromic, microcytic anemia (both are characteristics of iron deficiency).

Aplastic Anemia

(another type of anemia)

- Bone marrow aplasia means that bone marrow fails to produce blood cells
- Bone marrow failure caused by...
 - Radiation high dose of radiation sometimes in cancer therapy
 - Chemotherapy might lead to destruction of hematopoietic stem cells which may cause anemia in few weeks.
 - Chemical toxins or drugs such as high doses of toxins or insecticides
 - Auto-immune: production of Ig antibodies for the bone marrow stem cells or RBCs; e.g., lupus erythromatosis.
 - Idiopathic (unknown cause)
- Patients of aplastic anemia are Supported by transfusions or treated by bone marrow transplantation (transplantation of new stem cells)

Megaloblastic Anemia

- Results from Deficiency of Vitamin B₁₂ and / or Folic Acid, these deficiencies can result from:
 - Pernicious anemia
 - Dietary deficiency
 - Malabsorption
- Impairs DNA replication in proliferating hematopoietic cells, causing maturation failure due to the deficiency of Vitamin B12 and / or Folic Acid
- Formation of large, fragile cells with bizarre shapes (abnormal 8 odd shapes), which rupture easily, potentially causing profound anemia

Vitamin B₁₂ and Folic Acid

- Rapid, large-scale cellular proliferation of hematopoietic stem cells in erythropoiesis requires optimal nutrition (B12, folic acid & iron)
- Cell proliferation requires DNA replication
- Vitamin B₁₂ and folate both are needed to make thymidine triphosphate necessary for DNA (thus, DNA)
- Abnormal DNA replication due to these deficiencies causes failure of nuclear maturation and cell division...
- maturation failure large, irregular, fragile "macrocytes"

Pernicious Anemia

(may cause megaloblastic anemia)

- It is due to Failure to absorb vitamin B₁₂
- Because of Atrophic gastric mucosa... leads to
 - Failure to produce intrinsic factor which is important for absorbing vit B12
- Intrinsic factor binds to vitamin B₁₂
 - Protects it from digestion by digestive enzymes
 - Binds to receptors in the ileum, after vit B12 binds to intrinsic factor they both bind to receptors in the ileum which enhances vit B12 absorption
 - Mediates transport by pinocytosis which is how B12 is absorbed
- Vitamin B₁₂ stored in liver, released as needed
- Usual stores: 1 3 mg
 Daily needs: 1 3 μg
- Thus normal stores are adequate for 3 4 years, so pernicious anemia may not appear until 3 or 4 yrs.

Folic Acid Deficiency

(the 2nd cause of megaloblastic anemia)

- Folic acid is present in green vegetables, some fruits, and meats
- Destroyed during cooking
- Subject to dietary deficiencies
- May also be deficient in cases of intestinal malabsorption
- Folic acid deficiency leads to Maturation failure of RBCs may reflect combined B₁₂ and folate deficiency if there is abnormal intestinal absorption, eg: tropical sprue.

Hemolytic Anemia

(another type of anemia)

- Hereditary conditions causing fragility of RBCs, such as:
 - Hereditary spherocytosis
 - Sickle cell anemia
- Immune-mediated destruction, such as:
 - Erythroblastosis fetalis: when there is incompatibility between the fetus who has (Rh+) blood type & the mother who has (Rh-) blood type and she has antibodies against Rh factor, fetus RBCs will be attacked which leads to hemolytic anemia

Circulatory Effects of Anemia

- Anemia
 - Decreased viscosity
 - Decreased O₂ carrying capacity
 - As a result body tissues need more oxygen

Increased cardiac output to provide more O2 (more load on heart, capillaries &local circulation. Precapillary sphincters will also dilate inducing more blood flow in the microcirculation which increases venous return thus increased cardiac output)

Markedly decreased exercise capacity

normal daily physiological activities already increase cardiac output, if anemic patients increase physical activity (heavy exercise)--> O2 insufficiency--> higher load on the heart --> serious complications due to hypoxia (the heart is unable to work harder)

Polycythemia

higher number of RBCs, there are 2 types:

Secondary to hypoxia in tissues (RBC ~ 30%; 6-7 million/mm³)

- Chronic hypoxemia due to (heart or lung disease)
- Physiologic polycythemia
- Living at 14 17,000 feet (high altitudes)
- Markedly enhanced exercise capacity at altitude

Hypoxia in tissue --> more erythropoietin stimulation, higher rate of RBC production --> higher number of RBCs (6-7 million/mm3) 30% more than normal

Polycythemia Vera

 Clonal abnormality causing excessive proliferation It is a genetic form of the disease resulting in continuous proliferation in all blood cell types even when there is enough number of RBCs

- Usually all lineages (RBCs, WBCs, platelets)
- 7-8 million RBCs / mm³; Hematocrit 60-70%, instead of 45-50%
- Blood volume increased almost two-fold
- Hyperviscosity, up to 3-fold than normal which is (10 x water)
 - -Hyperviscosity increases the resistance and impedes blood flow especially in the capillaries.

Polycythemia & Circulation

- Increased viscosity decreases venous return
- Increased blood volume increases venous and cardiac output will be found to be nearly normal. return
- 2/3 normotensive, 1/3 hypertensive

maybe due to failures in arterial blood pressure regulatory mechanisms to correct the increase in the resistance.

 The subpapillary venous plexus under the skin becomes engorged with slow-moving, de-saturated blood, producing a ruddy complexion with a bluish tint to the skin

LAB TESTS

- Packed Red Blood Cell Volume PCV
- Erythrocytes Sedimentation Rate ESR
- Red Blood Cell Osmotic Fragility Test

Packed Cell Volume (PCV)

- PCV is the ratio of the volume of packed red cells to the total blood volume.

 -How to measure PCV?
- Adult males: 40-54% (avg = 47%).
- Adult females: 38-46% (avg = 42%)

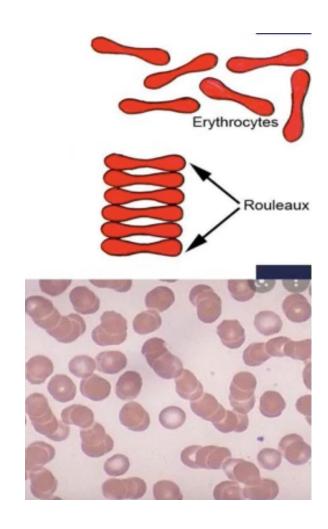
- Withdraw blood, place it in a tube, centrifuge it, then measure the volume of the red **bottom layer** and compare it to the total blood volume.
- It decreases in cases of anemia and increases in polycythemia and dehydration.
- PCV is also called hematocrit

Erythrocyte Sedimentation Rate (ESR)

- •The rate at which red blood cells settle out when anticoagulated whole blood is allowed to stand for a period of one hour.
- •The ESR is a simple, sensitive but <u>non-specific</u> screening test that indirectly measures the presence of inflammation in the body, It is **non-specific** as it indicates the presence of inflammation without indicating its reason or the site.
- •It's increase reflects the tendency of red blood cells to settle more rapidly in the presence of inflammatory conditions, usually because of increases in plasma fibrinogen, immunoglobulins, and other acute-phase reaction proteins,

More inflammation = faster sedimentation

•Changes in red cell shape or numbers may also affect the ESR, e.g. in anemia.


Note: In this test, since the blood must sediment on its own and separate from the plasma, we do not centrifuge it. Also, an anticoagulant is added to prevent coagulation.

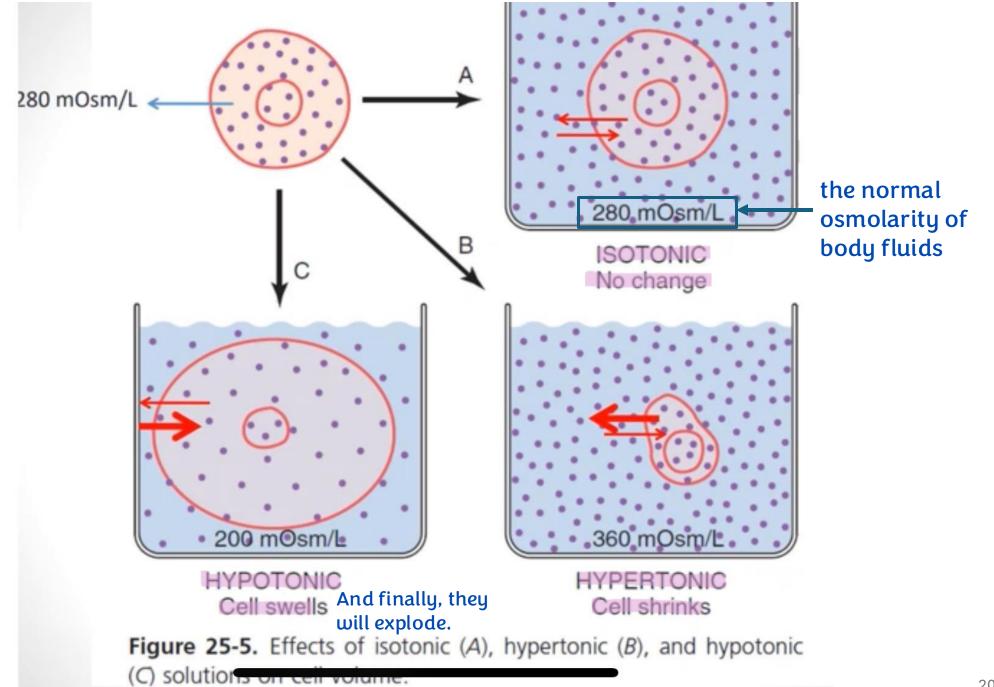
RBCs sedimentation

•The RBCs sediment even without centrifuging because their density is greater than that of plasma. The sedimentation increases if stacking of RBCs (rouleaux formation) happens.

disk-like

- •Rouleaux formation is possible because of the discoid shape of RBCs
- •Normally, RBCs have negative charges on the outside of the cells, which cause them to repel each other and decreases or prevents rouleaux formation.
- •Many plasma proteins have positive charges and can neutralize the negative charges of the RBCs, which allows for the formation of the rouleaux.
- •Therefore, an increase in plasma proteins (present in inflammatory conditions) will increase the rouleaux formations, which settle more readily than single red blood cells leading to increased ESR during inflammation

اللهم صلّ على محمد وعلى آل محمد كما صلّيت على إبراهيم وعلى آل إبراهيم إنك حميد مجيد


Normal ESR values

- Adult males < 15mm/hr
- Adult females < 20mm/hr
- •High ESR
- > Inflammation
- > Anemia
- Old age
- Pregnancy
- > Technical factors: tilted ESR tube, high room temperature.
- Some interferences which decrease ESR:
- Abnormally shaped RBC (sickle cells and spherocytosis)
- Polycythemia
- •Technical factors: low room temperature, delay in test performance (>2 hours), clotted blood sample

High room temperature increases ESR because it reduces plasma viscosity and enhances red cell kinetics, allowing RBCs to settle faster.
Low temperature has the opposite effect.

Osmotic fragility

- •When RBCs reside in an isotonic medium, the intracellular and extracellular fluids are in osmotic equilibrium across the cell membrane, and there is no net influx or efflux of water.
- •When RBCs reside in a hypertonic media, a net efflux of water occurs so the cells lose their normal biconcave shape, undergoing collapse and they will shrink
- •When RBCs reside in a hypotonic medium, a net influx of water occurs so the cells swell, when the swelling overcomes the membranes' integrity, the integrity of their membranes is disrupted and cell explode resulting in hemolysis

Osmotic fragility test

- •A test designed to measures red blood cell's resistance to hemolysis when exposed to a series of increasingly dilute saline solutions.
- The susceptibility of RBCs to hemolysis is determined by:

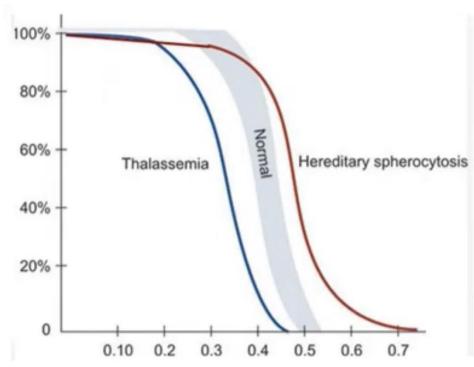
Divided by

- Surface area to volume ratio.
- Cell membrane composition and integrity
- •This test is mainly used to diagnose hereditary spherocytosis.

الله أكبر

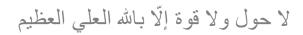
Osmotic fragility test

Note: numbers indicates saline concentrations


· Normally:

- Form 0.7% to 0.5% there is no hemolysis
- ➤ At the concentration of 0.48% hemolysis starts, and the solution becomes red in color (Due to the explosion of some cells), but there are some settled RBCs in the tube.
- ➤ The concentration of 0.36% the solution is bright red and there are no settled RBCs (complete hemolysis)

 When does spherocytosis hemolysis at the concentration of 0.68% which means RBCs can't resist hemolysis as they normally do (They are more fragile)


RBC Osmotic fragility

- Increased red cell fragility (increased susceptibility to hemolysis) is seen in the following conditions:
- > Hereditary spherocytosis
- > Autoimmune hemolytic anemia
- > Toxic chemicals, poisons, infections, and some drugs.
- > Severe burns.
- ✓ These cells have a low (surface area: volume) ratio
- Decreased red cell fragility (increased resistance to hemolysis) is seen with the following conditions:
- > Thalassemia.
- Iron deficiency anemia.
- ✓ These cells have a <u>high (surface area: volume) ratio</u>

- In hereditary spherocytosis, the hemolysis starts in a less diluted solution (a solution with higher concentration).
- While in thalassemia, the hemolysis starts in a more diluted solution (a solution with less concentration).
 -note the X axis-

Physiology Quiz 4

For any feedback, scan the code or click on it.

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			rearrangement
V1 → V2			