UNIT VI

Chapter 33

GUYTON AND HALL TEXTBOOK OF MEDICAL PHYSIOLOGY

Erythropoiesis requirements Part I and Part II Pathophysiology of Anemia 2nd week Lab tests Theory

Ebaa M Alzayadneh, PhD

Associate Professor of Physiology

Response to Hypoxia

- Minutes to hours... Terythropoietin
- New circulating reticulocytes...~ 3 days

- Erythropoietin...
 - drives production of proerythroblasts from HSCs
 - accelerates their maturation into RBCs
- Can increase RBC production up to 10-fold
- Erythropoietin remains high until normal tissue oxygenation is restored.

Vitamin B₁₂ and Folic Acid

- Rapid, large-scale cellular proliferation requires optimal nutrition
- Cell proliferation requires DNA replication
- Vitamin B₁₂ and folate both are needed to make thymidine triphosphate (thus, DNA)
- Abnormal DNA replication causes failure of nuclear maturation and cell division...
 - → maturation failure → large, irregular, fragile "macrocytes"

Perspective Pernicious Anemia

- Failure to absorb vitamin B₁₂
- Atrophic gastric mucosa...
 - Failure to produce intrinsic factor
- Intrinsic factor binds to vitamin B₁₂
 - Protects it from digestion
 - Binds to receptors in the ileum
 - Mediates transport by pinocytosis
- Vitamin B₁₂ stored in liver, released as needed
- Usual stores: 1 3 mg Daily needs: 1 3 μg
- Thus normal stores are adequate for 3 4 years

- Folic acid is present in green vegetables, some fruits, and meats
- Destroyed during cooking
- Subject to dietary deficiencies
- May also be deficient in cases of intestinal malabsorption
- Maturation failure may reflect combined B₁₂ and folate deficiency

Formation of Hemoglobin

- Occurs from proerythroblast through reticulocyte stage
- Reticulocytes retain a small amount of endoplasmic reticulum and mRNA, supporting continued hemoglobin synthesis

Shapes of RBC and Hemoglobin

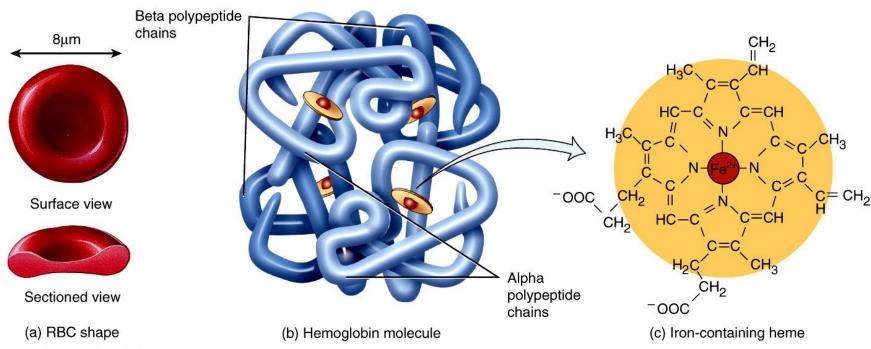
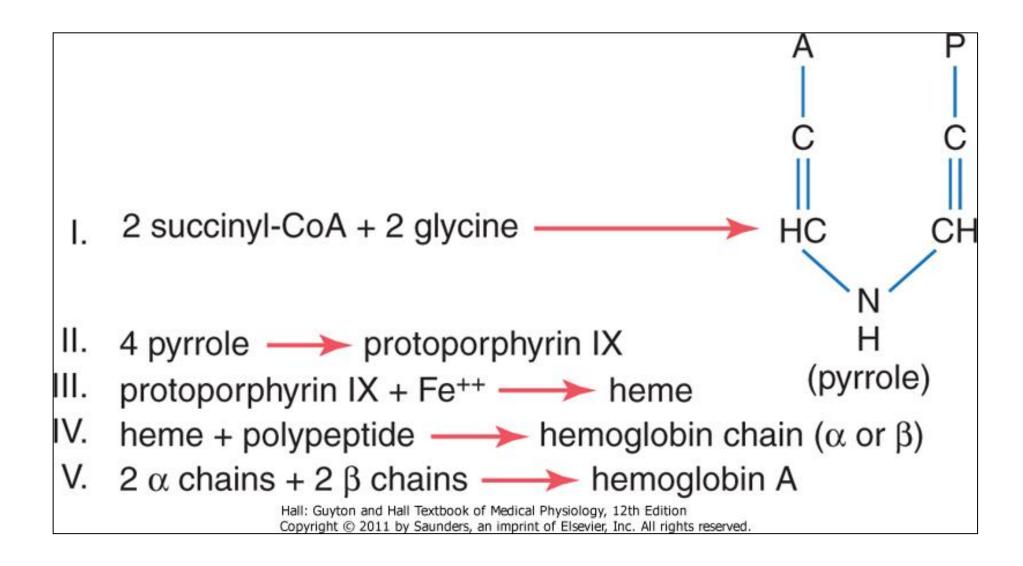
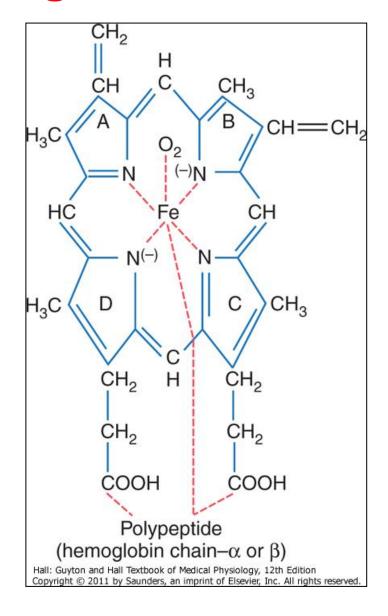




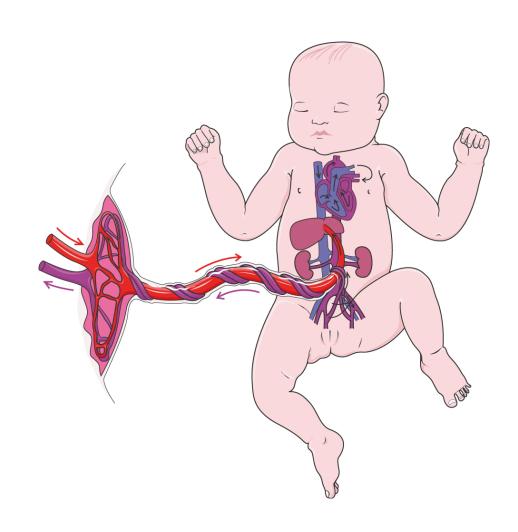
Figure 19.04 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Formation of Hemoglobin

Hemoglobin Structural Units

Types of Globin Chains

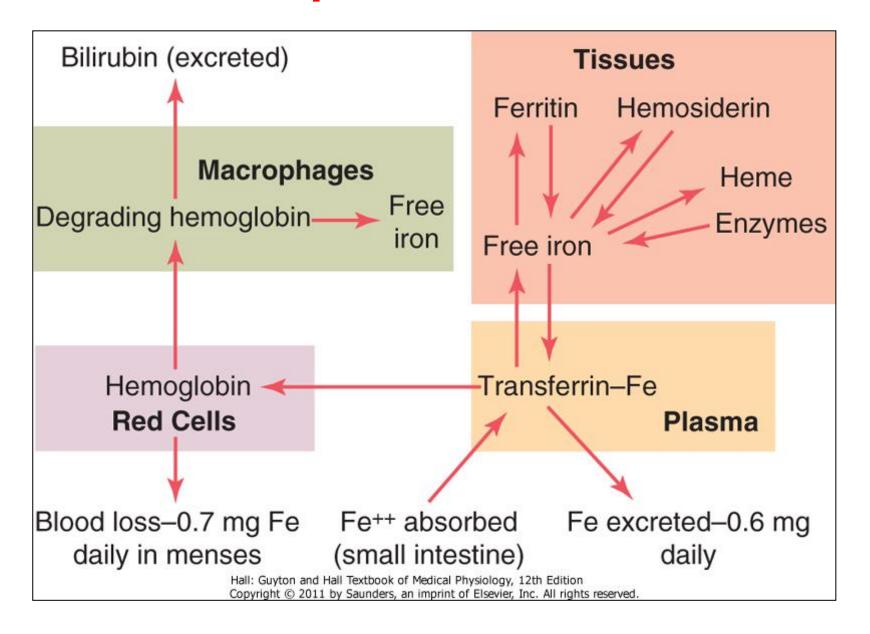
- Several types of globin chains resulting from gene duplication α , β , γ , δ ; MW ~ 16,000
- Predominant form in adults is Hemoglobin A, with 2 α and 2 β chains; MW 64,458
- Each globin chain is associated with one heme group containing one atom of iron
- Each of the four iron atoms can bind loosely with one molecule (2 atoms) of oxygen
- Thus each hemoglobin molecule can transport 8 oxygen atoms

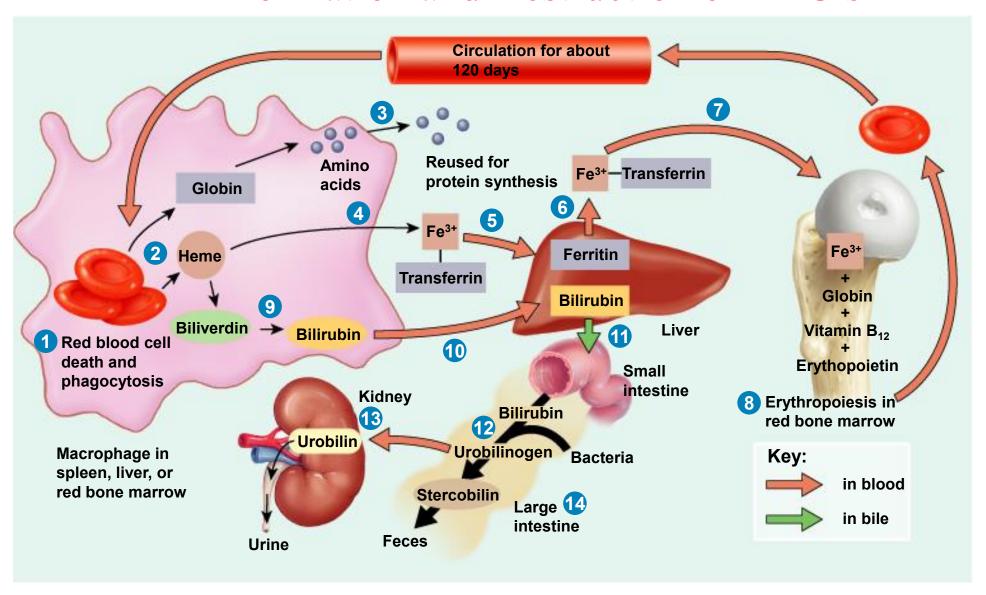

- Modest differences in O₂ binding affinities
- Sickle hemoglobin:
 Glutamic acid → Valine at AA 6
- Hemoglobin of homozygous individuals ("SS") forms elongated crystals when exposed to low O₂

hemolysis, vascular occlusion

Oxygen Binding to Hemoglobin

- Must be loosely bound binding in settings of higher O₂ concentration, releasing in settings of lower concentration
- Binds loosely with one of the coordination bonds of iron
- Carried as molecular oxygen (not as ionic oxygen)


Fetal hemoglobin


Iron Metabolism

- Iron is a key component of hemoglobin, myoglobin, and multiple enzymes (cytochromes, cytochrome oxidase, peroxidase, catalase)
- Thus iron stores are critically regulated
- Total body iron ~ 4 − 5 g
 - 65% in hemoglobin
 - 4% in myoglobin
 - 1% in intracellular heme compounds
 - 0.1% associated with circulating transferrin
 - 15 30% stored mainly as ferritin in RES

Iron Transport and Metabolism

Formation and Destruction of RBC's

Iron Absorption, Transport & Storage

- Absorbed from small intestine, combines with apotransferrin → transferrin (transport iron)
- Iron can be released to any cell
- RBC precursors have transferrin receptors and actively accumulate iron
- Particularly in hepatocytes and reticuloendothelial cells, iron combines with apoferritin ferritin (MW 460,000)
- Ferritin is variably saturated (storage iron)
- · Hemosiderin is quite insoluble excess iron

Iron Exchange

- When iron in the plasma is low, iron is released from ferritin and bound to transferrin for transport.
- It is delivered to the bone marrow, bound by transferrin receptors on erythroblasts, internalized, and delivered directly to the mitochondria for incorporation into heme.
- Deficiency of transferrin can result in severe hypochromic anemia.
- Hemoglobin released from senescent RBCs is ingested by macrophages and stored as ferritin.

RBC Senescence & Destruction

- RBC life span is ~120 days
- Though lacking a nucleus, mitochondria, and endoplasmic reticulum, RBCs have enzymes that can metabolize glucose and make small amounts of ATP. These enzymes...
 - Maintain membrane pliability
 - Support ion transport
 - Keep iron in the ferrous form (rather than ferric)
 - Inhibit protein oxidation
- As enzymes deplete with age, RBCs become fragile and rupture in small passages, often in the spleen

Degradation of Hemoglobin

- When RBCs rupture, hemoglobin is phagocytosed by macrophages, particularly in the liver and spleen
- Iron is released back to transferrin in the blood to support erythropoiesis or be stored as ferritin
- Macrophages convert the porphyrin portion, stepwise, into bilirubin, which is released into the blood and secreted by the liver into the bile

- Blood loss (acute, chronic)
- After hemorrhage...
 - Fluid volume restored in 1 3 days
 - RBC concentration restored in 3-6 weeks
- Chronic blood loss can lead to iron deficiency, with hypochromic, microcytic anemia.

Clinical Perspective Aplastic Anemia

- Bone marrow failure caused by...
 - Radiation
 - Chemotherapy
 - Chemical toxins
 - Auto-immune
 - Idiopathic
- Supported by transfusions or treated by bone marrow transplantation

- Deficiency of Vitamin B₁₂ and / or Folic Acid
 - Pernicious anemia
 - Dietary deficiency
 - Malabsorption
- Impairs DNA replication, causing maturation failure
- Formation of large, fragile cells with bizarre shapes, which rupture easily, potentially causing profound anemia

Perspective Hemolytic Anemia

- Hereditary conditions causing fragility
 - Hereditary spherocytosis
 - Sickle cell anemia
- Immune-mediated destruction
 - Erythroblastosis fetalis

Circulatory Effects of Anemia

- Anemia
 - Decreased viscosity
 - Decreased O₂ carrying capacity

Increased cardiac output

Markedly decreased exercise capacity

Secondary (RBC ~30%; 6-7 millio \(^3\)

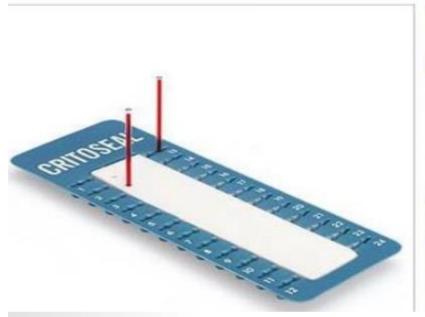
- Chronic hypoxemia (heart or lung disease)
- Physiologic polycythemia
 - Living at 14 17,000 feet
 - Markedly enhanced exercise capacity at altitude

Polycythemia Vera

- Clonal abnormality causing excessive proliferation
- Usually all lineages
- 7-8 million RBCs / mm³; Hematocrit 60-70%
- Blood volume increased almost two-fold
- Hyperviscosity, up to 3-fold normal (10 x water)

Perspective Polycythemia & Circulation

- Increased viscosity decreases venous return
- Increased blood volume increases venous return
- 2/3 normotensive, 1/3 hypertensive
- The subpapillary venous plexus under the skin becomes engorged with slow-moving, de-saturated blood, producing a ruddy complexion with a bluish tint to the skin

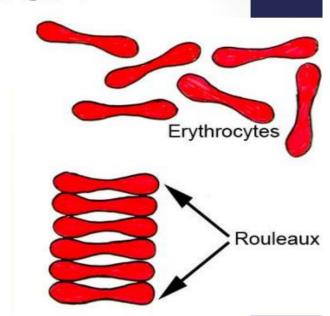

LAB TESTS

- Packed Red Blood Cell Volume PCV
- Erythrocytes Sedimentation Rate ESR
- Red Blood Cell Osmotic Fragility Test

Packed Cell Volume (PCV)

- PCV is the ratio of the volume of packed red cells to the total blood volume.
 - Adult males: 40–54% (avg = 47%).
 - Adult females: 38–46% (avg = 42%)
- It decreases in cases of anemia and increases in polycythemia and dehydration.

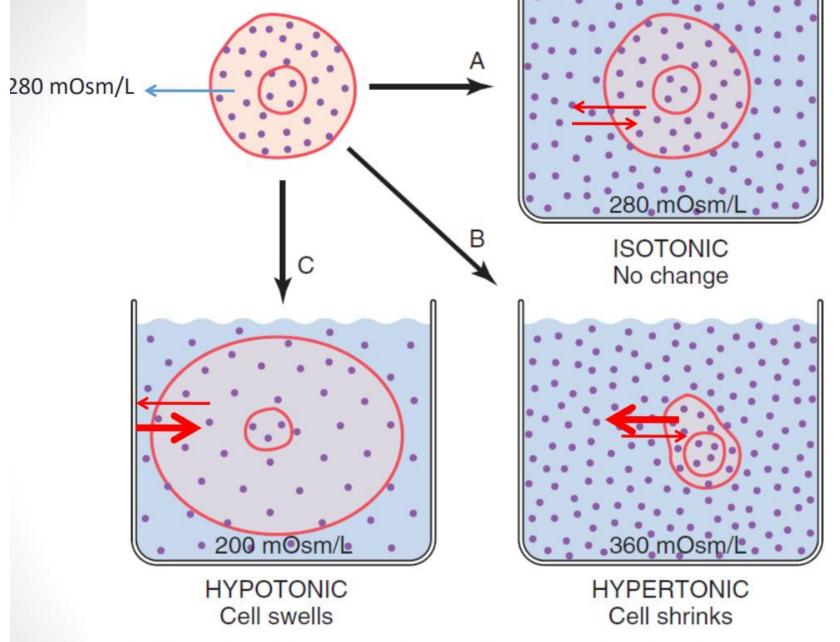
Erythrocyte Sedimentation Rate (ESR)


- The rate at which red blood cells settle out when anticoagulated whole blood is allowed to stand for a period of one hour.
- The ESR is a simple, sensitive but **non-specific** screening test that indirectly measures the presence of inflammation in the body.
- It's increase reflects the tendency of red blood cells to settle more rapidly in the presence of inflammatory conditions, usually because of increases in plasma fibrinogen, immunoglobulins, and other acute-phase reaction proteins.

Changes in red cell shape or numbers may also affect the ESR.

RBCs sedimentation

- The RBCs sediment because their density is greater than that of plasma. The sedimentation increases if stacking of RBCs (rouleaux formation) happens.
 - Rouleaux formation is possible because of the discoid shape of RBCs
- Normally, RBCs have negative charges on the outside of the cells, which cause them to repel each other and decreases or prevents rouleaux formation.
- Many plasma proteins have positive charges and can neutralize the negative charges of the RBCs, which allows for the formation of the rouleaux.
- Therefore, an increase in plasma proteins (present in inflammatory conditions) will increase the rouleaux formations, which settle more readily than single red blood cells leading to increased ESR during inflammation



Normal ESR values

- Adult males < 15mm/hr
- Adult females < 20mm/hr
- High ESR
 - **➤** Inflammation
 - > Anemia
 - ➤ Old age
 - > Pregnancy
 - ➤ Technical factors: tilted ESR tube, high room temperature.
- Some interferences which decrease ESR:
- Abnormally shaped RBC (sickle cells and spherocytosis)
- Polycythemia
- Technical factors: low room temperature, delay in test performance (>2 hours), clotted blood sample

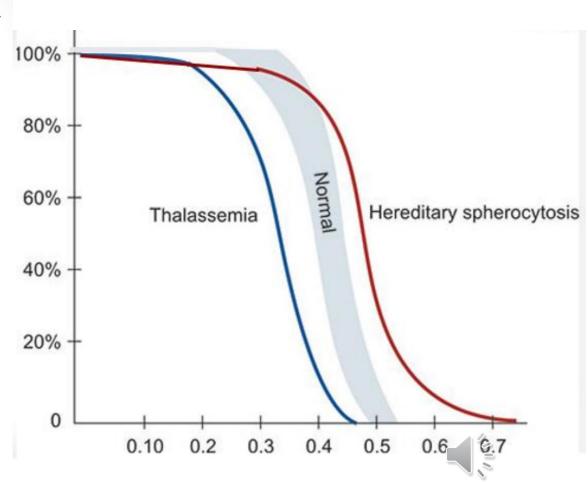
Osmotic fragility

- When RBCs reside in an isotonic medium, the intracellular and extracellular fluids are in osmotic equilibrium across the cell membrane, and there is no net influx or efflux of water.
- When RBCs reside in a hypertonic media, a net efflux of water occurs so the cells lose their normal biconcave shape, undergoing collapse.
- When RBCs reside in a hypotonic medium, a net influx of water occurs so the cells swell and the integrity of their membranes is disrupted resulting in **hemolysis**

Figure 25-5. Effects of isotonic (*A*), hypertonic (*B*), and hypotonic (*C*) solutions on cell volume.

Osmotic fragility test

- A test designed to measures red blood cell's resistance to hemolysis when exposed to a series of increasingly dilute saline solutions.
- The susceptibility of RBCs to hemolysis is determined by:
 - >Surface area to volume ratio.
 - ➤ Cell membrane composition and integrity
- This test is mainly used to diagnose hereditary spherocytosis.


Osmotic Fragility Test

- From 0.7% to 0.5% there is no hemolysis.
- At the concentration of 0.48% hemolysis starts and the solution becomes red in color, but there are some settled RBCs in the tube.
- At the concentration of 0.36%, the solution is bright red and there are no settled RBCs (complete hemolysis).
- With spherocytosis hemolysis starts at the concentration of 0.68% which means RBCs can't resist hemolysis as they normally do (they are more fragile)

RBC Osmotic Fragility

- Increased red cell fragility (increased susceptibility to hemolysis) is seen in the following conditions:
 - > Hereditary spherocytosis
 - > Autoimmune hemolytic anemia
 - > Toxic chemicals, poisons, infections, and some drugs.
 - > Severe burns.
 - ✓ These cells have a <u>low surface area</u>: volume ratio
- Decreased red cell fragility (increased resistance to hemolysis) is seen with the following conditions:
 - > Thalassemia.
 - ➤ Iron deficiency anemia.
 - ✓ These cells have a <u>high surface area: volume ratio</u>

