

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

Immune summary

Lec 1 : Immunoassays-and-serology

﴿أَن تَعْلَمَ اللَّهُ الْمُحْكَمُ تَعْلَمُ كُلَّ الْأَنْبِيَاءَ﴾

هذا العمل صدقة جارية عن روح الزميل عمر عطية

"الباقيات الصالحة خيرٌ وابقي."

-سبحان الله

-الحمد لله

-الله اكبر

-لا اله الا الله

-سبحان الله وبحمده

-سبحان الله العظيم

-استغفر الله واتوب إليه

-اللّهُمَّ صلِّ عَلَى نَبِيِّنَا مُحَمَّدٍ

-لا اله الا انت سبحانك اني كنت من الظالمين

قبل ما تبدأ:

Serology

- What?
 - In vitro Ag-Ab reactions
- Principle
 - Immune specificity (key-lock)
- Problem
 - Cross-reaction \rightarrow \downarrow specificity
- Uses
 - Infections (syphilis, hepatitis viruses, Rickettsia)
 - Autoimmune (Anti-DNA antibodies in lupus or rheumatoid factor)
 - Blood / tissue typing

Tests

- Agglutination \rightarrow particulate
- Precipitation \rightarrow soluble
- ELISA / RIA \rightarrow high sensitivity
- Immunofluorescence \rightarrow see antigen on cells
- Complement fixation \rightarrow complement consumption
- Western blot \rightarrow confirmation

Titer: Highest dilution still positive

- Higher denominator = more Ab
- Antibodies
 - IgM \rightarrow current / Acute
 - IgG \rightarrow past / immunity/ current (compare results btw 2 weeks & must be increased by 4 folds) / between acute and convalescent

1/64 vs 1/4
↑Ab
Immune (isol)

Patient Ag IgM dil (1/16) \downarrow S/I \downarrow \Rightarrow
Ab = serum

Agglutination

Ab (multivalent) + particulate Ag → lattice → visible clumping

- Particulate Ag

1. Bacteria
2. RBCs / heme
3. ABO
4. Latex beads

- Clinical Applications

1- ABO blood typing → RBC (specific Ag) + antisera (serum with specific Ab)

2- Latex agglutination → beads + serum → pathogen detection

3- Hemagglutination → RBC clumping (≠ clotting)

✓ Simple, rapid, minimal equipment, visual results fast

Precipitation

Soluble, Multivalent Ag + multivalent Ab → lattice → precipitate

- Zone of Equivalence : Optimal ratio (Ag-Ab) → max lattice
- Prozone → Ab excess → false negative → Labs dilute serum to fix this issue
- Postzone → Ag excess → small complexes

Nephelometry (solution):

→ measured by optical density (light refraction / scattering → measure IgG/IgM

Immunodiffusion (agar):

- 1- Single radial → ring size → concentration
- 2- Double (Ouchterlony) = compare antigens → lines → identity:

A- Identity: line merges / Ag identical

B- Non-identity: crossing lines / NO shared epitopes

C- Partial identity: merged line + spur / shared + unique epitopes
- spur points to more complex antigen

Immunodiffusion (Agar)

Electrophoresis → separate proteins by electricity → Ab diffusion → precipitin arcs

✓ Detect abnormal globulins (myeloma)

Counter-immunoelectrophoresis (السريع)

same as but instead of waiting slow diffusion of Ab we use electric again

Radioimmunoassay = RIA

- **Competitive** assay btw Radio-labeled antigen (كمية معروفة) Patient antigen (كمية مجهولة)

On limited # of Ab

- Inverse relationship:
↓ radioactivity = ↑ patient Ag

✓ **highly sensitive so measures:**

1. antigen concentration (quantitative method)
2. hormones and drugs.

- **Radioallergosorbent test = RAST :** specialized RIA for IgE antibodies (allergy diagnosis)

↑ Ag patient → *يصل إلى الماء* → *الماء يحيط بالمثلث* → *الثلث ينبع*

Immunofluorescence

Direct:

Biopsy with specific Ag → fluorescent-labeled Ab → Fluorescence microscope.

✓ "one-step" - rapid diagnosis. It detects Ag in biopsy specimens

Indirect:

Ag + patient serum → **fluorescent-labeled anti-human IgG**

✓ "two-step" + more sensitive than direct

Indirect IF	Direct IF	Feature
2	1	Steps
Secondary antibody	Primary antibody	Fluorescent on
		أعلى أقصى سلبي

Antibody (patient)	Antigen	Target	Uses
When searching for Ab	Autoimmune		
↳ Anti nuclear Ab	↳ Skin		
↳ Double stranded DNA Ab	↳ Kidney		

⊕ in Autoimmune Disease

دیگر
پرتوگو
کیمی

کیمی

Enzyme-Linked Immunosorbent Assay (ELISA)

Ag (fixed) → Patient Ab (if present)
 → **Enzyme-linked anti human IgG = secondary Ab**
 → Substrate → Color → spectrophotometer (optical density OD / absorbance)
 => Darker the colour => ↑Ab
 ✓ quantifies Ab without radiation uses enzyme-linked conjugates instead. as sensitive as RIA
 standard tool for screening, safe, widely available

أعلى OD قياس كمية الضوء المبعثر أو الممتص = Optical density =
 كلما زادت OD زادت كمية ال Ag;Ab

Western Blot (Immunoblot)

Viral proteins separated by electrophoresis
 → transferred onto filter paper → add Antisera (patient)
 → Ab bind to specific bands → Enzyme-labeled anti-IgG
 → visualizes the band → confirms specific Ab are present

✓ Confirmatory test
 confirms positive screening results

Complement Fixation Test

Patient's serum heated = stop patient complement (Endogenous)

1. Patient serum = Ab
2. Known Ag
3. Complement

Step 1 ✓ if Ab exist → Ag-Ab complex → complement is FIXED
 ✗ if Ab missed → complement is FREE

Step 2
 Interpreting Complement Fixation:
 Add Sensitized RBCs (surround by Ab)
 - FREE complement attack RBCs → hemolysis
 + FIXED complement NO attack → NO hemolysis

- Test = hemolysis to FREE RBC = NO Ab
 + Test = NO Hemolysis to FIXED RBC = Ab exist

ELISA: Ab هل في

Western blot: Ab against which protein

Neutralization: is the Ab functional or not

معنى

النتيجة

positive → patient antibodies
 موجودة → complement تم استهلاكه

negative → patient antibodies
 غير موجودة → complement حر

Neutralization Tests

Have to know: Ab block toxins + viral effect on cells
Ab prevent viral damage in cell culture (inhibition of cytopathic effects)

- In cell culture:

Known virus → patient serum (Ab) → into a living cell
 if neutralizing Ab exist → NO cell death (+ test)
 if neutralizing Ab missed → cell death (- test)

- In Host animals:

Ab neutralized toxin = mice survive
No Ab = No neutralization = toxin effect = mice death

Ex: Plaque Reduction Neutralization Test (PRNT):
conformational test for arbo virus

highly specific

(so used when there is cross reactivity in previous test)

Hemagglutination Tests

Have to know:
Active **Hemagglutination**: some viruses / like **Influenza virus** clump RBCs by a protein called **Hemagglutinin** So agglutination will happen.

Hemagglutination Inhibition (HI test):

هل المريض عنده Ab ضد الفيروس ولا ؟

Known virus → patient serum (Ab) → add RBC
 if Ab exist → Ab prevent virus from binding to RBC → NO agglutination (+test)
 if Ab missed → virus bind to RBC → agglutination (- test)

NO clumping = antibody موجود

Passive Hemagglutination (HI test):

RBCs coated by soluble Ag → add patient serum
 if Ab exist → RBC bind Ab → Agglutination (+test)
 if Ab missed → no binding → NO agglutination (- test)

Clumping = antibody موجود

Antiglobulin (Coombs) Test

Have to know: Normally NO clumping in RBC
Diseases:

1. Hemolytic disease of newborn [Rh incompatibility]
2. Drug-related hemolytic anemias

Ab against RBC (sensitized) => NO SYMPTOMS NO Hemolysis
NO Agglutination

(so making agglutination happen will prove that Ab bound to RBC)

By (different names = same thing):

- Antibody against Human Ab
- Anti-human immunoglobulin
- Coombs reagent
- Antiserum to human immunoglobulin

• **Direct Coombs:** detects Ab on washed RBCs in vivo

1. Autoimmune hemolytic anemia
2. Hemolytic disease of newborn

• **Indirect Coombs:** detects Ab in serum

patient's serum + normal RBC + antiserum to human immunoglobulins is added

- ✓ if Ab exist in serum → Agglutination (+test)
- ✗ if Ab missed in serum → NO agglutination (- test)

1. Blood transfusion / prevents transfusion reactions
2. cross-matching

Flow Cytometry

Mix of cells & I need to know (how much + how many)
Flow = قیاس سیل / تیار Cyto = خلیه Metry =

Label cells with **fluorescent monoclonal Ab**

Each Ab bind to specific marker on specific cell (CD4 cells)
laser analysis of single cells (cells pass one by one – laser
beats each cell - light - send a signal)

 counts cells in a fluid stream.

The machine analyzes **cell size** & fluorescence

Quantifies specific immune cell populations

• **fluorescence-activated cell sorter (FACS)** :

specialised form of this technology.

It physically **sorts** cells based on markers

ABO Blood Groups

ABO (Antigens):

- each RBC has specific surface sugars (genetically encoded) & determine blood type

H antigen is the base structure

Group A: H Ag + we = A Ag

Group B: H Ag + galactose = B Ag

Group AB: precursor for A + B Ag

Group O: only H Ag

ABO (Antibodies):

Landsteiner's Law: we have Ab against missing Ag.

These are **"natural" IgM Ab**

detectable in (early life) first 3-6 months of age,

develop against cross-reacting bacterial antigens.

They activate complement & cause hemolysis.

Type A: Anti-B Ab

Type B: Anti-A Ab

Type AB: nothing

Type O: Anti-A + Anti- B

Transfusion Compatibility

Transfusions must match donor + recipient Incompatibility causes immediate cell lysis (Ab in recipient serum attack donor RBC)
Mismatches trigger shock and hemolysis (due to complement activation)

Group O: universal red cell donor (NO A,B Ag)

Group AB: universal recipient (plasma NO A,B Ab)

Rh Blood Group System: defined by the D antigen / They are IgG antibodies.

Presence of D = Rh-positive (85% of humans)

Rh antibodies are **not naturally occurring** = not born with it — form after exposure to Rh-positive RBCs via transfusion or pregnancy.

- Rh incompatibility is a major clinical concern. It differs from ABO in antibody type

Hemolytic Disease of the Newborn -erythroblastosis fetalis (HDN): involves Rh incompatibility.

Rh- negative mother carries Rh-positive fetus. (baby positive)

- Maternal IgG An cross the placenta —> attack Rh positive fetal RBCs —> hemolysis in newborn (**the Direct Coombs test is positive**).

** Prevention: high titers Anti-Rh immunoglobulins = RhoGAM injection at 28 weeks of gestation and upon delivery . This prevents maternal sensitization

Immune Complexes in Diagnosis: Ag-Ab lattices.

Deposit in tissues (in kidney cause glomerulonephritis) —> complement activation—> inflammatory disease

Detected by Fluorescent labeled complement

Serum complexes bind to complement as C1q or specific cells in culture.

Detection aids in diagnosing inflammatory diseases.

Just a small reminder: Hemolytic disease of the newborn does not occur during the first pregnancy. The first pregnancy usually leads only to maternal sensitization. During this initial exposure, the Rh-negative mother produces anti-D antibodies after contact with Rh-positive fetal red blood cells, typically at delivery.

In subsequent pregnancies, these preformed IgG anti-D antibodies can cross the placenta and attack the fetal red blood cells, leading to hemolysis. Therefore, prevention with anti-D immunoglobulin is essential to stop sensitization from occurring in the first place.

تم بفضل الله

آية الكرسي

الله لا إله إلا هو الذي القيوم لا تأخذ
سنة ولا نوم له ما في السماوات وما في
الارض من ذا الذي يشفع عنده إلا بإذنه
يعلم ما بين أيديهم وما خلفهم ولا
يحيطون بشيء من علمه إلا بما شاء
وسع كرسيه السماوات والأرض ولا يئوده
حفظهم وهو العلي العظيم

255