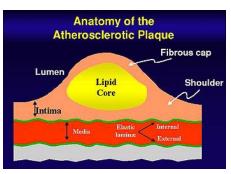


Atherosclerosis

A form of arteriosclerosis characterized by:

Atheromatous plaques containing cholesterol and lipids.

Found on the innermost layer of large and medium-sized arteries.

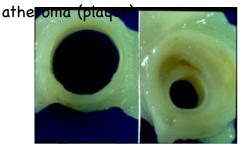

Etymology: From Greek "athero" (gruel/paste) and "sclerosis" (hardness).

Cell Types in Atherosclerosis

Key cell types involved:

Smooth muscle cells

Endothelial cells
Fibroblasts
Macrophages
Foam cells
T-lymphocytes
Mast cells



Risk Factors for Atherosclerosis:

Normal vs. Atheromatous Coronary Artery

Normal coronary artery: Has a smooth lining without plaque.

Atherosclerotic coronary artery: Contains a fibrous cap over an

Non-Modifiable Risk Factors:

Age: Begins young, but organ injury occurs later. Gender: Men are more prone; equal risk by age 60–70.

Family History: Genetic predisposition.

Modifiable Risk Factors:

Hyperlipidemia
Hypertension
Cigarette smoking
Diabetes Mellitus
Elevated homocysteine levels
Infections: e.g., Herpes virus, Chlamydia pneumoniae
Obesity, sedentary lifestyle, stress
Elevated serum cholesterol uniquely drives atherosclerosis.

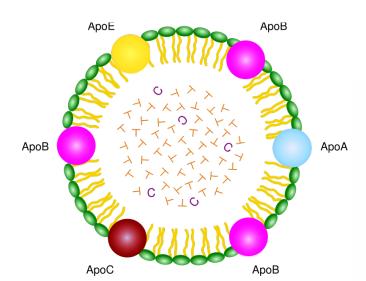
Familial Hypercholesterolemia (FH):

Caused by deficiency/mutation of LDL receptors leading to high cholesterol levels.

Cholesterol Mechanisms in Atherosclerosis

Sources of cholesterol:

Endogenous production (from the liver, ~1g/day)


Dietary intake (from animal sources)

LDL Cholesterol levels classification:

Optimal: Less than 100 Near Optimal: 100–129 Borderline High: 130–159

High: 160-189

Very High: 190 and above

Acanthosis Nigricans

Lipid Transport Mechanisms

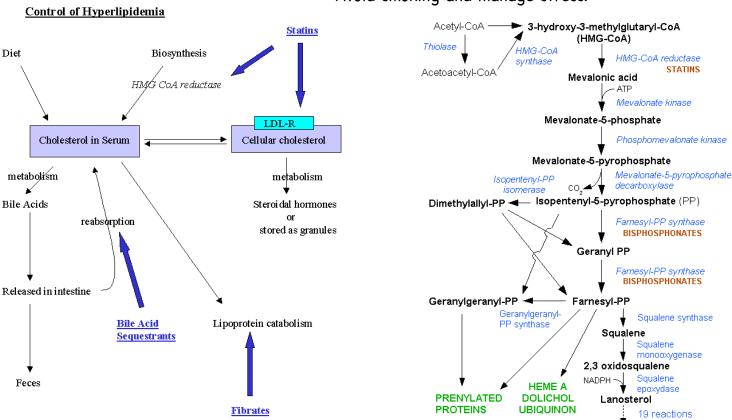
Cholesterol and fats are poorly soluble in blood; thus, they are transported via lipoproteins: Chylomicrons

VLDL (Very Low-Density Lipoprotein)

IDL (Intermediate-Density Lipoprotein)

LDL (Low-Density Lipoprotein)

HDL (High-Density Lipoprotein)


Lifestyle Modifications:

Diet: Low in fat/cholesterol; increase fruits/ vegetables.

Physical activity: Increases HDL and helps control weight, diabetes, and blood pressure.

Reducing body weight increases HDL levels.

Avoid smoking and manage stress.

Statins:

Examples: Simvastatin, Atorvastatin, Pravastatin.

Mechanism: Decrease LDL by 30-50% by blocking HMG-CoA reductase. Increase LDL receptor expression in the liver, lowering circulating LDL.

Treatment: Lipid-Lowering Drugs

CHOLESTEROL

Side effects: Myopathy, especially with combined therapy, and

contraindicated in pregnancy.

Niacin for Lipid Lowering

Nicotinic Acid (Vitamin B3):

Functions by converting to NAD or NADP+.

Hypolipidemic effects:

Increases HDL-C by 35-40%.

Lowers triglycerides by 35-45%.

Decreases LDL-C production by 20-30%.

Mechanism: Inhibits triglyceride lipolysis in adipose tissue.

Fibrates for Lipid Lowering

Fibrates (e.g., Gemfibrozil, Fenofibrate):

Activate PPAR-a to stimulate fatty acid oxidation.

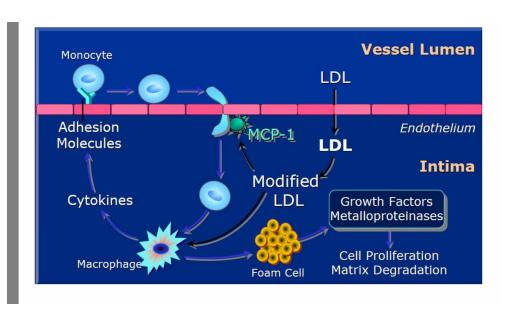
Decrease levels of VLDL and LDL while moderately increasing HDL.

Used in severe hypertriglyceridemia.

Side effects: Rashes, myopathy, and may interact with statins.

Bile Acid-Binding Resins

Examples: Colestipol, Cholestyramine, Colesevelam.


Mechanism: Bind bile acids in the intestine, preventing reabsorption, and increasing hepatic cholesterol synthesis.

Leads to increased LDL clearance but may elevate triglycerides due to HMG-CoA reductase upregulation.

Inhibitors of Sterol Absorption

Ezetimibe:

Reduces LDL by inhibiting cholesterol absorption in the intestine (NPC1L1). Can reduce absorption by 54%, leading to increased cholesterol synthesis. Works well with statins for enhanced LDL-C reduction (15-20%). Possible side effects include allergic reactions and liver function impairment.

