

MID | Lecture 8

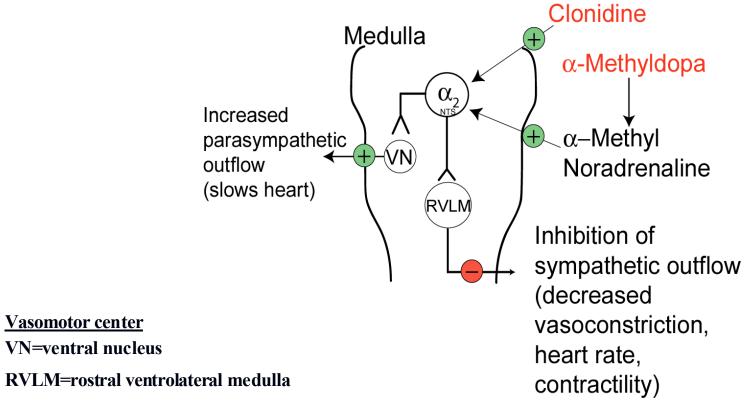
اللهم إنّا نعوذ بك من شرور أنفسنا ومن سيئات أعمالنا

Anti-hypertensives (pt.5)

Written by:

Ansam Othman

Raghad Hamdan


Reviewed by: Sarah Mahasneh

Centrally Acting Sympathoplegic Drugs 'Central α₂ Agonists'

Although α_2 -receptors are present in blood vessels, they are much fewer than α_1 -receptors. Their main location and function is in the **presynaptic nerve terminals** of the central nervous system, where they provide negative feedback to inhibit norepinephrine release. This action controls sympathetic outflow and helps maintain homeostasis by balancing sympathetic stimulation.

Central α_2 -Adrenergic Agonists

- Methyldopa and clonidine cross BBB to stimulate α_2 receptors in vasomotor center in brainstem
- Inhibit sympathetic and increase parasympathetic outflow to periphery
- Decrease BP
- At high concentrations, increase BP by stimulating peripheral α_2 receptors but the net effect is a decrease in peripheral resistance

Mechanism and Effects of Central α 2-Agonists

- After activation of the sympathetic nervous system and the release of norepinephrine (NE), the NE binds to presynaptic α 2-receptors to provide negative feedback, which reduces further NE release.
- \circ Drugs known as α 2-agonists (such as clonidine and methyldopa) **mimic** this action.
- · Clonidine's net effect is a decrease in blood pressure because it reduces sympathetic outflow and decreases vasoconstriction.
- \circ In general, α 2-agonists inhibit sympathetic outflow, leading to \downarrow cardiac output, \downarrow NE binding to α 1-receptors, \downarrow peripheral resistance, \downarrow heart rate, and \uparrow parasympathetic activity.

- · Although α 2-receptors exist in blood vessels, they are much fewer than α 1-receptors, and when activated they can cause vasoconstriction, similar to α 1-effects.
- However, this effect is mainly seen in **laboratory settings**, or when **high IV doses** of $\alpha 2$ -agonists are used.
- \circ At high concentrations, even selective drugs become less selective, producing α_1 -like **vasoconstriction**.

Central α_2 -AR Agonists: Mechanism of Action

- Heart rate, cardiac output, total peripheral resistance, plasma renin activity, and baroreceptor function are reduced
 - Reduced plasma renin activity means less angiotensin II and aldosterone. However, with α_2 -agonists, sodium and water retention can still happen. This is because these drugs lower sympathetic tone and blood pressure, so the kidneys sense reduced perfusion and retain more sodium and water, even though renin stays low.
- Vascular smooth muscle: α_2 adrenergic receptors located on vascular smooth muscle open Ca²⁺ channels and cause vasoconstriction. Not evident clinically unless given intravenously or at high doses.

Summary:

Normal therapeutic doses: \downarrow BP and \downarrow vascular resistance through \downarrow cardiac output and \downarrow heart rate. High concentrations (lab/IV): cause vasoconstriction, similar to α 1-receptor activation.

Central α_2 -AR Agonists

They act more centrally than peripherally

- Clonidine, (guanabenz and guanfacine): Direct acting α_2 adrenergic receptor agonists.
- α -methyldopa Prodrug taken up by central adrenergic neurons and converted to the α_2 adrenergic receptor agonist α methylnorepinephrine. Although its structure resembles dopa, its main role is that it replaces norepinephrine in storage vesicles, so it is considered a false neurotransmitter. Its final active form produces central α_2 activation, leading to reduced sympathetic outflow.

Clonidine (Catapres): Pharmacokinetics

- Oral plasma $t_{1/2} 12-16$ hrs
- Transdermal administration of clonidine by <u>patch</u> (replaced once per week) useful in patients unable to take oral medication

Clonidine patches provide steady, continuous delivery over a week, overcoming the drug's short half-life and improving adherence while maintaining stable blood pressure.

Clonidine: **Side Effects**

- Dry mouth (44%) peripheral effect
- Drowsiness (50%)
 Dizziness (15%)
 These are central effects.
- Clonidine can cause sodium retention, but may be used at low doses w/o addition of diuretic

Clonidine: Drug Interactions

Tricyclic antidepressants can reverse the antihypertensive effects of clonidine

Methyldopa (Aldomet): Side Effects

Like Clonidine, causes **sedation**, dry mouth, sodium retention, and dizziness

These drugs depress central nervous system activity, which can cause sedation and reduce symptoms such as pain and over-alertness. By the central action of clonidine, it can indirectly reduce muscle tone, giving a muscle-relaxing effect in certain conditions.

With prolonged use, hemolytic anemia is a rare side effect

Clonidine and Methyldopa: Drug interactions

Drugs that influence blood pressure—particularly those that affect CNS sympathetic activity—can diminish their effect or cause loss of blood-pressure control.

- Tricyclic antidepressants affect the uptake mechanism of catecholamines (epinephrine and norepinephrine) which will increase their concentration in the synaptic cleft and may prevent the antihypertensive effect.
- Barbiturates, a CNS inhibitor (used in anaesthesia, epilepsy), may reduce the efficacy through the induction of hepatic microsomal enzymes.

Clonidine and Methyldopa: Drug interactions

- Drugs are metabolized by the body mainly to make them easier to eliminate, and in some cases, metabolism can activate the drug
 Drug metabolism occurs in two steps:
 - 1. Oxidation-reduction reactions
 - 2. Conjugation reactions

If a drug induces microsomal enzymes such as CYP450, it will increase metabolism and lower the drug's plasma concentration. For example, barbiturates induce CYP450, which can reduce the effect of antihypertensive drugs and therefore lessen their ability to lower blood pressure.

• Monoamine oxidase inhibitors when co-administered may produce hypertension and CNS stimulation because they increase the concentration of monoamines.

Indications

- Methyldopa is a first choice for hypertension during pregnancy
- $\ \square$ Other medications considered safe in pregnancy include certain β -blockers (such as labetalol) and calcium channel blockers like nifedipine (a dihydropyridine). Therefore, if a woman becomes pregnant and is already taking these drugs for chronic hypertension, they usually do not need to be changed.
- □ However, if she is taking ACE inhibitors or ARBs, they must be stopped immediately and replaced, because they are unsafe in pregnancy.
- Clonidine is useful in the diagnosis of pheochromocytoma (adrenal tumor that secretes high amounts of NE and cause hypertensive crisis) in hypertensive patients; it will reduce NE to lower then 500 pg/mL in tumor-free patients, If the concentration of norepinephrine remains high after a course of clonidine, this indicates that there is another source of NE release.

Ganglionic Blockers

act on the autonomic ganglia.

- **Trimethaphan**
- **Pentolinium**
- Mecamylamine
- Block transmission in both sympathetic & parasympathetic systems.
- Act immediately and are very efficacious. Effect rapidly
- reversed, so used for short term control of BP, e.g. intraoperatively or emergency.
- Many side effects.

The autonomic ganglia act as synapses between the preganglionic and postganglionic neurons, and they belong to both the sympathetic and parasympathetic systems. Nicotinic receptors are present in both systems, and they have two main types: **Nm** (muscle type) and **Nn** (neuron type).

The effect of blocking both sympathetic and parasympathetic systems depends on which division is dominant in each organ.

<u>Cardiovascular system (CVS):</u>

Blood vessels (arterioles and veins): Parasympathetic innervation is minimal, so the sympathetic system is dominant. Blocking sympathetic tone causes vasodilation.

Heart: The atria and SA node are predominantly parasympathetic, while the ventricles are predominantly sympathetic.

Blocking parasympathetic input \rightarrow tachycardia.

Blocking sympathetic input to the ventricles \rightarrow decreased contractile force.

Other tissues here are important to know as side effects of these drugs.

For example, mydriasis in iris, constipation in GIT, urinary retention in urinary bladder, dry mouth in salivary glands...

Organ	Predominate System	Results
Cardiovascular System Heart Arterioles Veins	Parasympathetic Sympathetic Sympathetic	Tachycardia Vasodilatation Dilation
Eye Iris Ciliary Muscle	Parasympathetic Parasympathetic	Mydriasis Cycloplegia
GI Tract	Parasympathetic	Relaxation (constipation)
Urinary Bladder	Parasympathetic	Urinary retention
Salivary Glands	Parasympathetic	Dry Mouth
Sweat Glands	Sympathetic	Anhidrosis

Sweat glands are controlled only by sympathetic cholinergic fibers, so blocking this sympathetic tone reduces sweat secretion.

TABLE 14.2 Predominant Autonomic Tone at Various Neuroeffector Junctions and the Effect Produced by Ganglionic Blockade

Site Effect of Ganglionic Blockade

Tissues predominantly under parasympathetic (cholinergic) tone Myocardium

Atrium; S-A node Tachycardia

Eye

Iris Mydriasis
Ciliary muscle Cycloplegia

GI tract Decrease in tone and motility; con-

stipation

Urinary bladder Urinary retention

Salivary gland Dry mouth

Tissues predominantly under sympathetic (adrenergic) tone

Myocardium

Ventricles Decrease in contractile force

Blood vessels

Arterioles Vasodilation; increase in peripheral

blood flow; hypotension

Veins Vasodilation; pooling of blood; de-

crease in venous return; decrease

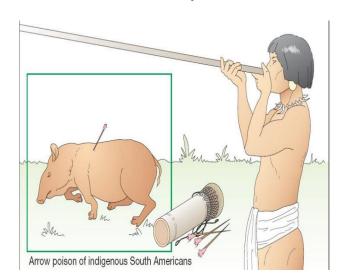
in cardiac output

Sweat glands^a Decrease in secretion

[&]quot;Anatomically sympathetic; transmitter is ACh.

Trimethaphan

Trimethaphan camsylate (Arfonad) is an extremely short-acting agent whose major therapeutic use is in the production of controlled hypotension in certain surgical procedures and in the emergency treatment of hypertensive crisis.

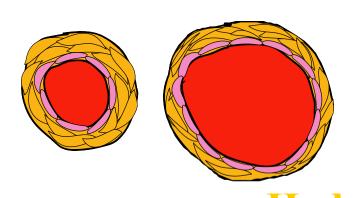

Side effects:

- Potentiate the effect of tubocurarine in surgery.
- Have histamine (which causes bronchoconstriction and increases secretions of respiratory system) releasing properties (Caution in allergies) so, antihistamine must be given to counteract this effect.
- These drugs are rarely used because they have many side effects. They act very quickly and their effect wears off rapidly, making them useful in emergency situations or surgical procedures where precise and short-term control of blood pressure is needed. For example, if blood pressure needs to be controlled for only 15 minutes, these drugs can be given for that period and stopped whenever desired.

Drug interaction:

Tubocurarine is a non-depolarizing skeletal muscle relaxant that blocks Nm nicotinic receptors at the neuromuscular junction. It is used during surgery to relax laryngeal and pharyngeal skeletal muscles, which helps with easy intubation, and to relax other skeletal muscles when surgical access is needed. When tubocurarine or other non-depolarizing muscle relaxants are given together with Trimethaphan, Trimethaphan's weak Nm-blocking action can enhance the muscle-relaxant effect. **Patient monitoring is essential**.

Remember from pharma MSS:


Image Interpretation

- One of the earliest uses of tubocurarine was for hunting animals.
- As mentioned earlier, this drug does not harm individuals when ingested because it cannot be absorbed in the gastrointestinal (GI) tract due to its polar nature.
- Tubocurarine has been used for centuries as a hunting poison, though the clinical use of these drugs started in the 1940's.

Quaternary nitrogen (not absorbed) so given IV in surgeries.

Vasodilators

Vasodilators: Mechanism of Action

outside the cell).

- Relax Vascular smooth muscle cells
- Vasodilate Arterioles (mainly arterial vasodilation rather than the veins)
- Decrease PVR
- Decrease Blood Pressure

Hydralazine Smooth Minoxidil Muscle cell Remember: · Calcium channel blockers also cause vasodilation by inhibiting calcium channels. · Another way to inhibit calcium channels is through hyperpolarizing $\,Ca^2\,$ contract **Contractile elements** the cell. Hyperpolarization of the cell can occur by opening K+ channels (goes

Hydralazine (Apresoline):

Mechanism of Action

- Direct vasodilatory action on arterioles altering smooth muscle cell Ca²⁺ by hyperpolarizing cell (thought to do so by activating k+ channels).
- Decreases total peripheral resistance
- Sympathetic activity (Reflex responses)
 - Increased heart rate
 - Increased heart contractility
 - Increased plasma renin activity

- Very old drug.
- Mechanism of action is unknown.
- Given to the control group in animals because of it's know vasodilatory effect.
- Rarely used clinically today but may still be used in hypertensive emergencies—especially in pregnancy (preeclampsia).
- These drugs work only on BV (not heart), so hypotension caused by these drugs will result in reflex tachycardia.

Hydralazine: Pharmacokinetics

Plasma $t_{1/2}$ – 1 hr, but antihypertensive action of 12 hrs possibly due to storage in arterial wall

Hydralazine: Side-effects

- Reflex tachycardia
 - Can precipitate MI in elderly patients or patients with coronary artery disease
 - Reflex response can be blocked by addition of propranolol
- Sodium and water retention (from the increased renin activity)— can be prevented by addition of a diuretic
- Headache, Nausea, Dizziness
- Lupus syndrome

Minoxidil (Loniten): Mechanism of Action

- Activates ATP-sensitive K+ channels to cause hyperpolarization and smooth muscle cell relaxation
- Arteriolar vasodilation
- Decrease in total peripheral resistance

Minoxidil: Pharmacokinetics

- Plasma t_{1/2} 4 hrs, but hypotensive effect for 12-24 hrs
- A prodrug must be metabolized by the liver to form the active metabolite, minoxidil N-O sulfate

Minoxidil: Side effects

Similar to hydralazine

Hypertrichosis – accentuated hair growth

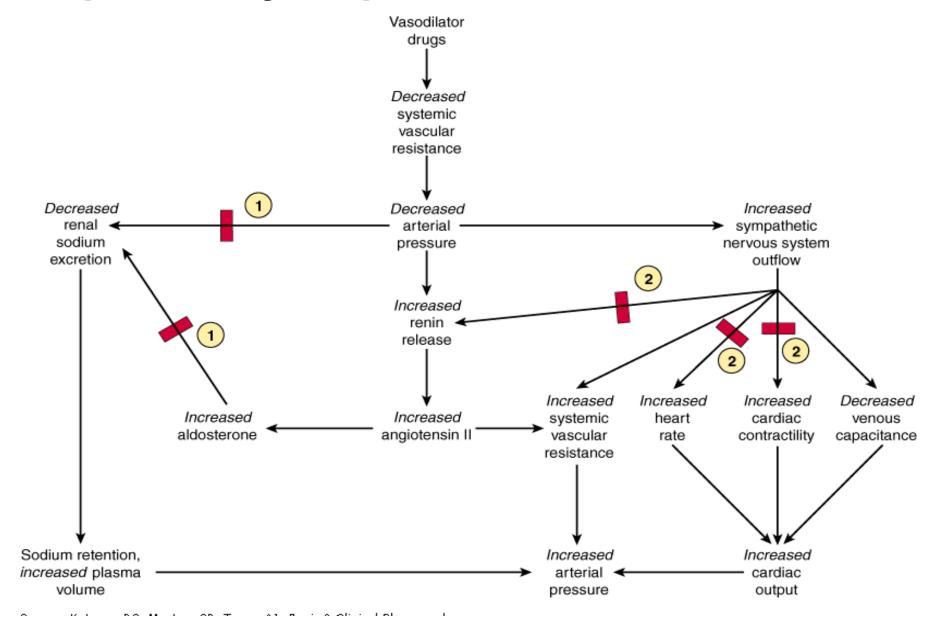
Minoxidil is reserved for treatment of severe hypertension and must be given with a diuretic and a sympatholytic agent (usually a βadrenergic receptor antagonist).

Remember:

Minoxidil is used for hair growth by dilating the BVs supplying the hair follicles which allows for more oxygen, blood, and nutrients to the follicles.

Minoxidil was first used as an anti-hypertensive agent, but it was noted that some patients had hypertrichosis as a side effect.

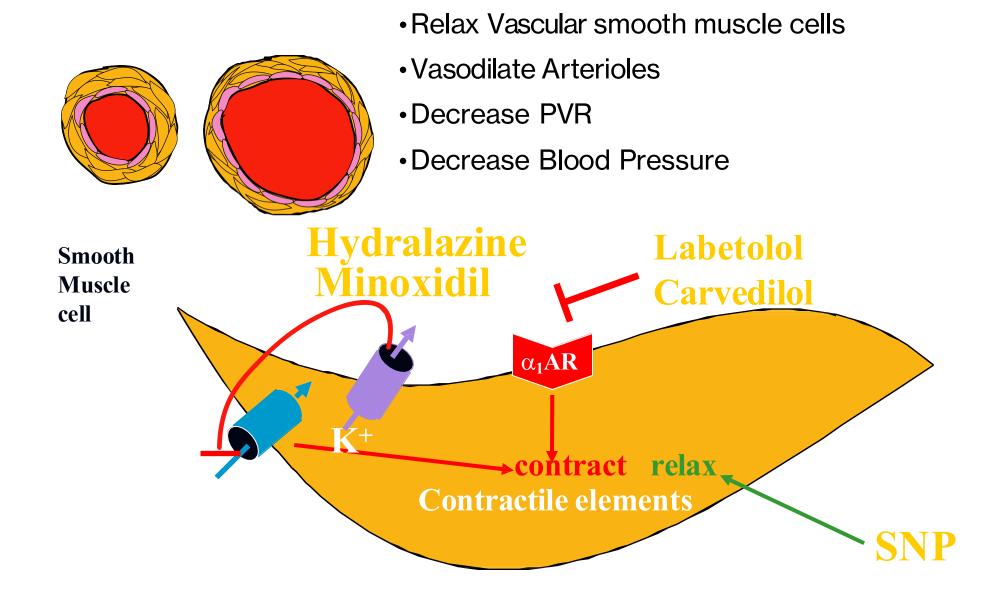
Indications


 Severe, resistant hypertension (rarely used as hypertensive drug)

VASODILATORS

Fenoldopam:

- Dopamine D₁ agonist, which results in vasodilation, renal vessel dilation, and natriuresis.
- Rapidly metabolized, short acting.
- Used by continuous infusion in emergencies or postoperatively.
- · Dopamine D₁ receptors are located on the renal arterioles.
- · In surgery, if blood pressure needs to be controlled while preserving renal perfusion (such as in a partial nephrectomy), Fenoldopam can be used because it increases renal blood flow. However, be cautious, as the increased perfusion may increase the risk of bleeding.


Compensatory responses to vasodilators

Vasodilators in Treatment of Hypertensive Crisis

A sudden rise in blood pressure is dangerous because it can lead to vascular rupture, hemorrhagic stroke, or other forms of intracranial bleeding. In hypertensive emergencies, blood pressure must be lowered promptly using fast-acting, potent IV medications. Commonly used agents include labetalol, nicardipine, clevidipine, and hydralazine.

Vasodilators: Mechanism of Action

Sodium Nitroprusside (SNP, Nipride): Mechanism of Action

- □ Sodium nitroprusside (SNP, Nipride) releases nitric oxide (NO), which diffuses into vascular smooth muscle cells and activates guanylyl cyclase. This increases the production of cGMP, leading to vascular smooth muscle relaxation.
- Liberates nitric oxide (similar to nitroglycerin) which dilates vascular smooth muscle

Thereby, decreases total peripheral resistance.

SNP: Pharmacokinetics

Short lived because it releases NO which is a gas that diffuses quickly.

- Given by I.V. infusion
- Is light sensitive and unstable in aqueous solution, so it is administered using brown tubing.
- Antihypertensive effect ceases upon stopping infusion
- Metabolized to sodium thiocyanate slowly cleared by kidneys
- Toxic accumulation (because of problems in the kidneys) of cyanide can lead to lactic acidosis.

SNP: Side-effects

- Rebound hypertension
- Tolerance

Diazoxide (Hyperstat): Mechanism of Action

- Dilates arterial smooth muscle through activation of K_{ATP} channels.
- Little or no effect on venous smooth muscle.
- Decreases total peripheral resistance
- □ Diazoxide causes arteriolar dilation, which reduces systemic vascular resistance and therefore decreases afterload. By lowering afterload, it can increase cardiac output indirectly, because the heart can eject blood more easily against a lower resistance

Diazoxide: Pharmacokinetics

Administered I.V.

Onset of action within 2 min.

■ Duration of action -6-24 hrs. Longer duration of action so considered better than SNPs.

Diazoxide: Side-effects

- Tachycardia
- Angina

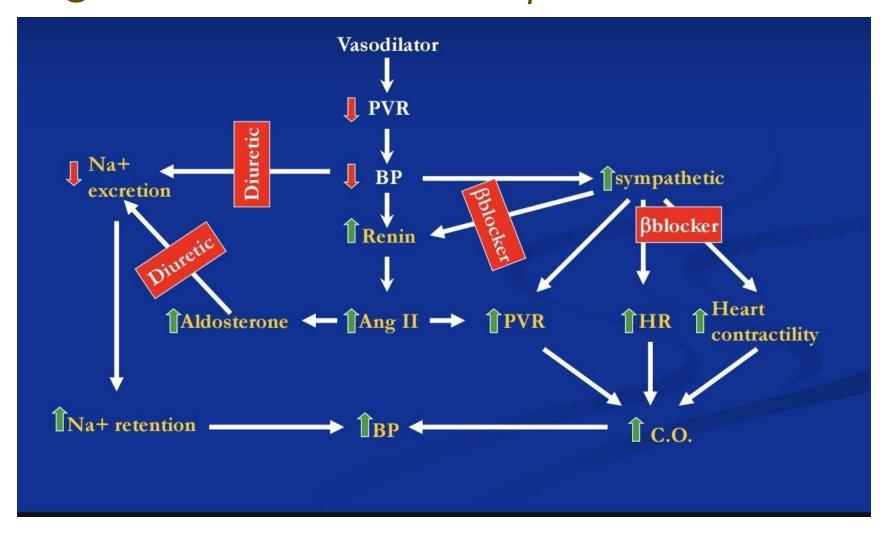
Labetalol (Normodyne) and Carvedilol (Coreg): Mechanism of Action

- Mixture of α_1 and non-selective β adrenergic receptor antagonist
 - Block adrenergic receptors in blood vessels and heart
 - Labetolol 1:3 selectivity α_1AR : βAR
 - Carvedilol 1:10 selectivity $\alpha_1 AR$: βAR
- Decrease total peripheral resistance w/o reflex tachycardia, because it blocks β_1 receptor in the heart.

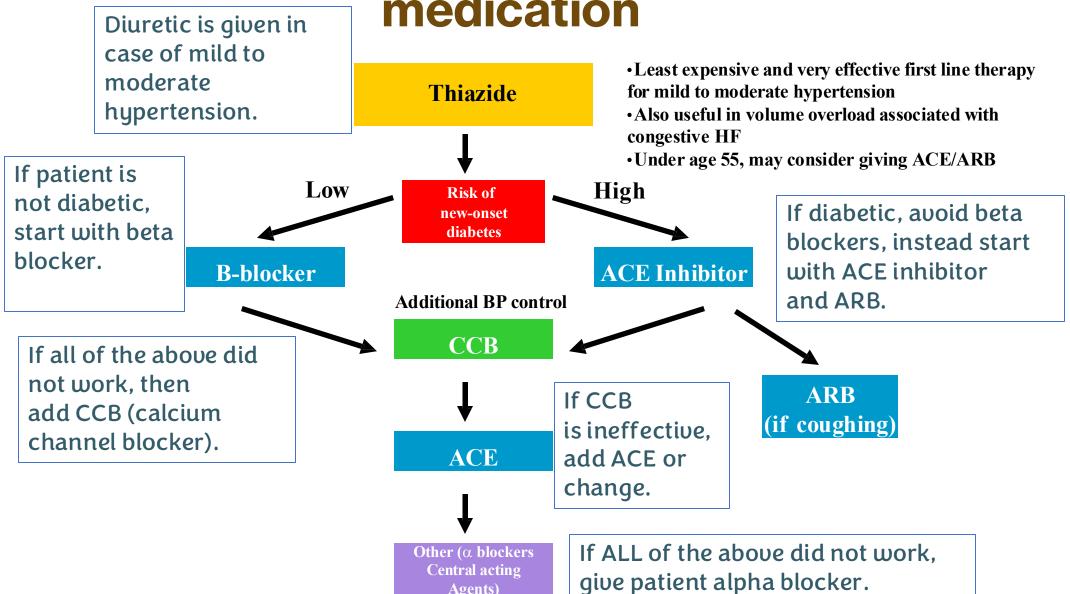
Dual effect:

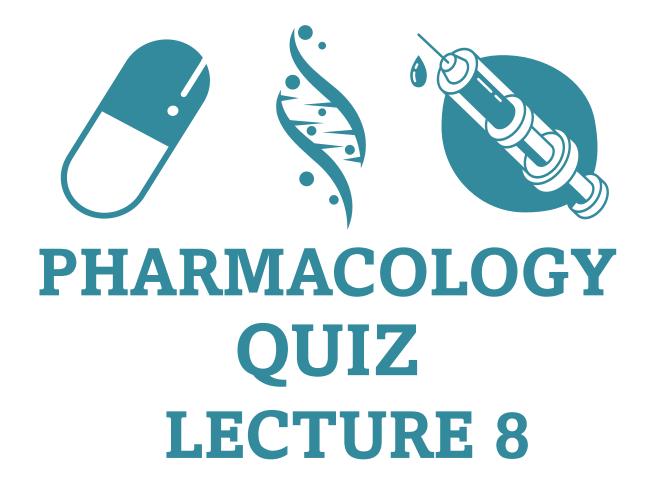
- Decreased heart rate and contractility lead to a reduction in cardiac output.
- 2) Vasodilation.

Labetalol & Carvedilol: Pharmacokinetics


- Administered orally or i.v. (for hypertensive crisis)
- Useful in pheochromocytoma (Labetalol).

In pheochromocytoma, patients have excessive catecholamines—mainly norepinephrine, which causes α_1 -mediated vasoconstriction, and epinephrine, which causes β_1 -mediated tachycardia and β_2 -mediated vasodilation.


Labetalol is useful because it blocks both α_1 -receptors (causing vasodilation) and β -receptors (reducing heart rate and contractility), helping to control the severe hypertension and tachycardia.


Plasma $t_{1/2}$ – 2 hrs (p.o.) and 5 hrs (i.v.)

Compensatory Responses to vasodilators can be managed with diuretics and β blockers

Generalized hierarchy of antihypertensive medication

Scan the QR code or click it for FEEDBACK

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			
V1 → V2			44