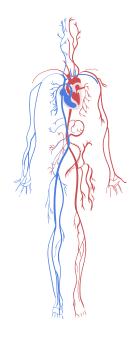
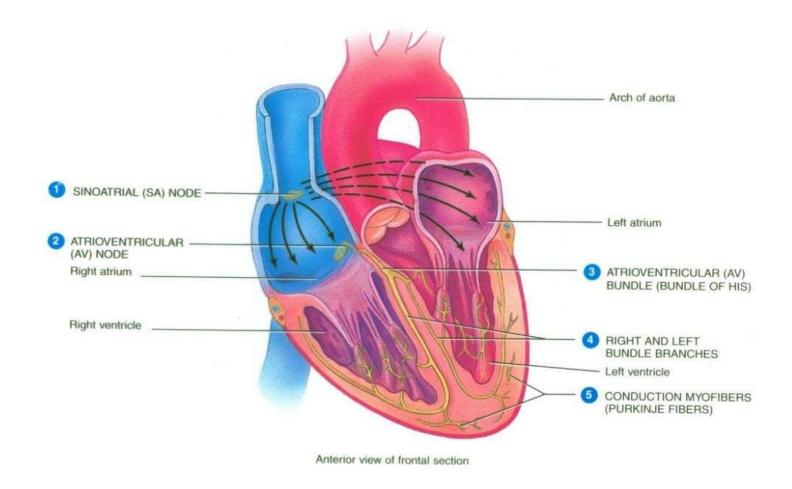


MID | Lecture 3


Conduction System of The Heart

Written by: Mohammad Al-Asali

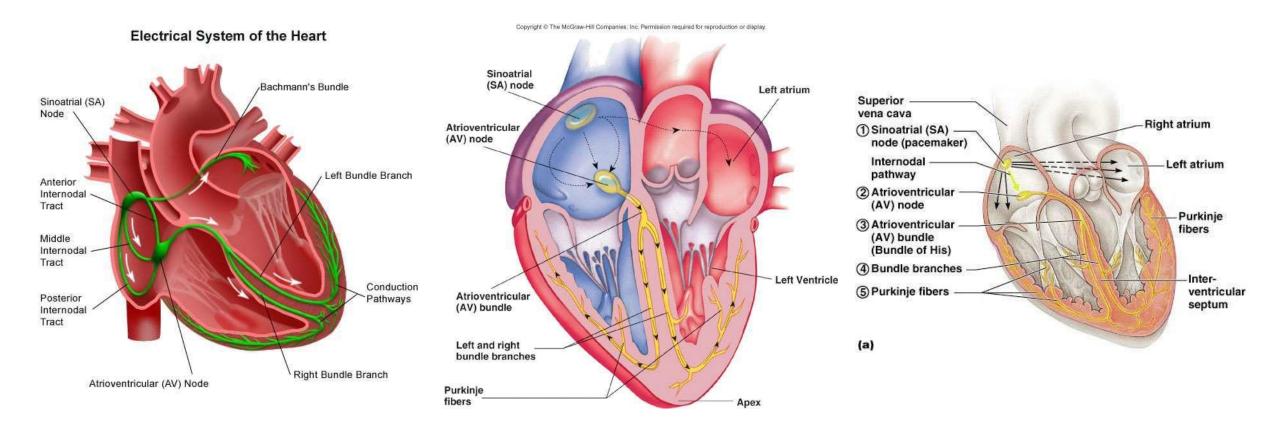
Reviewed by: Laith Joudeh



Objectives

- List the parts that comprise the conduction system
- Explain the mechanism of slow response action potential (pacemaker potential)
- Point out the regulation of the conduction system potential by Autonomic Nerves
- Resource: Guyton's Textbook of Medical Physiology last edition.

Structures of the Conduction System



Structures of the Conduction System

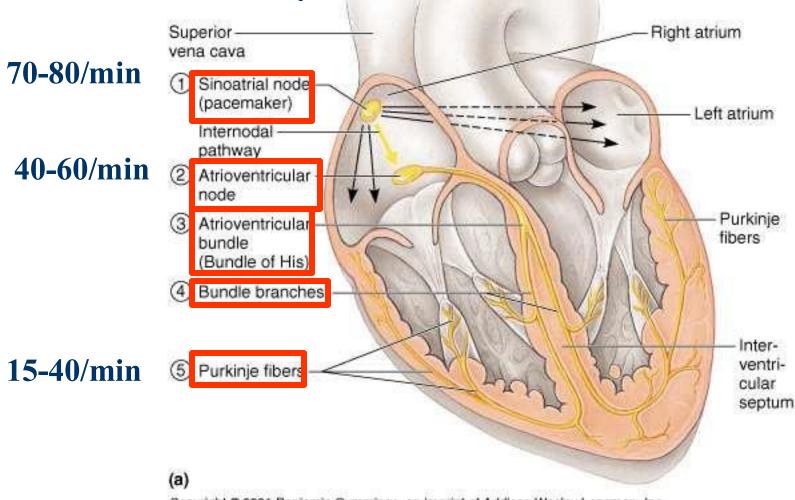
- Cardiac muscle is involuntary, meaning it is not controlled by somatic (voluntary) nerves.
- It is supplied by autonomic fibers, which include both the sympathetic and parasympathetic divisions.
- However, even if both autonomic inputs are severed, the heart continues to beat spontaneously.
- Therefore, the function of these autonomic nerves is to regulate, not initiate, the heartbeat.

Structures of the Conduction System

- During a heart transplant, the organ is removed from a **donor** and preserved in a **calcium-rich solution**.
- Extracellular Ca²⁺ is essential because the calcium that enters through voltage-gated slow Ca²⁺ channels triggers additional calcium release from the sarcoplasmic reticulum, sustaining contraction.
- Even when isolated and placed in a Ca2+-containing solution, the heart continues to contract on its own.
- As you know, mechanical contraction follows electrical excitation—there is no contraction without an electrical impulse.
- This electrical impulse arises from a specialized network within the heart called the cardiac conduction system, which provides an intrinsic rhythm for cardiac activity.

Conducting System of Heart & Sequence of Excitation

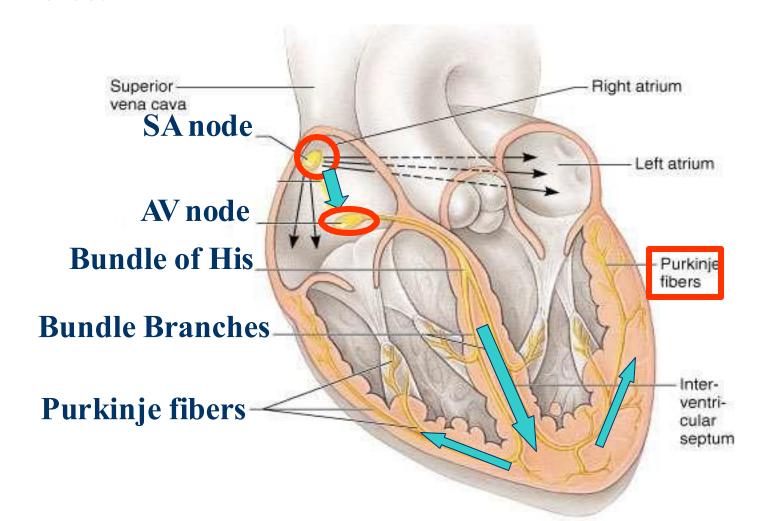
Heart Physiology: Sequence of Excitation


- The first component of the conduction system is the **sinoatrial (SA) node**, located just below the **superior vena cava (SVC)** opening on the **posterior wall of the right atrium**.
- All parts of the conduction system consist of **specialized cardiac muscle fibers**, adapted either **structurally or functionally** for impulse generation and conduction.
- Following the SA node, the impulse reaches the **atrioventricular (AV) node**, situated in the **right atrium near the atrioventricular junction**.
- From the AV node, the impulse travels through the atrioventricular bundle
 (Bundle of His), which pierces the fibrous skeleton separating the atria and
 ventricles a region that cannot conduct impulses directly because it is
 connective tissue, not muscle.

Heart Physiology: Sequence of Excitation

- Thus, the only normal pathway for conduction between the atria and ventricles is via the AV node and the AV bundle.
- The Bundle of His then divides into right and left bundle branches, which course subendocardially along the interventricular septum and extend through approximately twothirds of the ventricular myocardium.
- Finally, these branches terminate as Purkinje fibers (conduction myofibers) that distribute the impulse throughout the ventricular walls.

Intrinsic Cardiac Conduction System


Approximately 1% of cardiac muscle cells are autorhythmic rather than contractile

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Intrinsic Conduction System

<u>Function</u>: initiate & distribute impulses so heart depolarizes & contracts in orderly manner from atria to ventricles.

Internodal Pathways ??

- Transmits cardiac impulse throughout atria
- Anterior, middle, and posterior internodal pathways
- Anterior interatrial band carries impulses to left atrium
- Some researchers propose that the sinoatrial (SA) node and atrioventricular
 (AV) node are connected by internodal pathways. However, our doctor
 believes that these distinct fibers are not anatomically proven.
- Instead, the impulse generated by the SA node spreads throughout the atrial myocardium, and because the AV node lies within this muscle, it receives the depolarization directly through the surrounding atrial fibers.
- The AV node then transmits the impulse to the atrioventricular bundle
 (Bundle of His), which continues into the right and left bundle branches, and
 finally into the Purkinje fibers.

Components of the Conduction System of the Heart

- SA (sinoatrial) node (Pacemaker)
- Conduction system parts are modified cardiac muscle cells, consisting of:
 - 1. AV (atrioventricular) node
 - 2. A-V (atrioventricular) bundle
 - 3. Bundle branches (right and left bundle branches)
 - 4. Purkinje fibers
- All components of the conduction system can generate intrinsic action potentials, but each at a different frequency.
- These conduction fibers represent less than 1% of all cardiac muscle cells and are termed autorhythmic cells, as they generate rhythmic impulses rather than contract.
- The remaining 99% are contractile cells responsible for the mechanical pumping action of the heart.

Pathway of the Heartbeat

- 1. Begins in the sinoatrial (S-A) node
- 2. Internodal pathway to atrioventricular (A-V) node ??
- Impulse delayed in A-V node (allows atria to contract before ventricles)
- 4. A-V bundle takes impulse into ventricles
- **5. Left and right bundles of Purkinje fibers** take impulses to all parts of ventricles

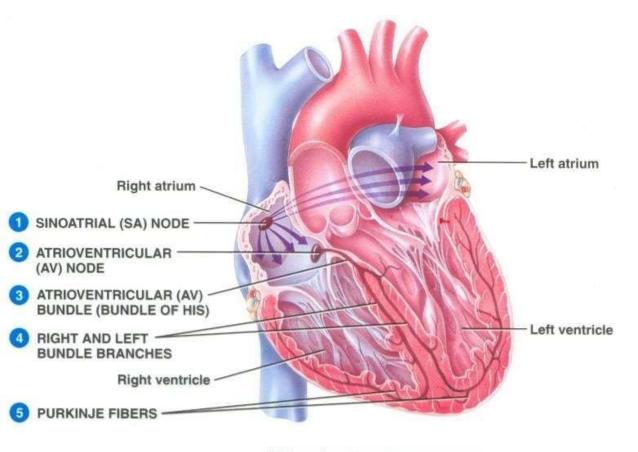
Atrioventricular (AV) Nodal Delay and Coordination of Contraction

- In the atrioventricular (AV) node, the electrical impulse is delayed before it passes to the ventricles.
- After the sinoatrial (SA) node generates an action potential, atrial depolarization occurs, leading to atrial contraction (systole).
- Depolarization represents the electrical activation of the muscle, followed by mechanical contraction, while repolarization corresponds to relaxation (diastole).
- The AV nodal delay ensures that the atria complete their contraction and fully empty blood into the ventricles before ventricular contraction begins.
- If both the atria and ventricles contracted simultaneously, it would result in inefficient pumping and impaired cardiac function.
- Thus, the AV node slows conduction to coordinate atrial systole before ventricular systole.

Sinus Node

- Specialized cardiac muscle connected to atrial muscle.
- Acts as pacemaker because membrane leaks Na⁺ and membrane potential is -55 to -60 mV.
- When membrane potential reaches -40 mV, slow Ca⁺⁺ channels open causing action potential.
- After 100–150 msec, Ca⁺⁺ channels close and K⁺ channels open more, thus returning membrane potential to -55 mV.

A-V Node


- **Delays** cardiac impulse
- Most delay is in A-V node
- Delay A-V node 0.09 sec
- Delay A-V bundle 0.04 sec

Purkinjie System

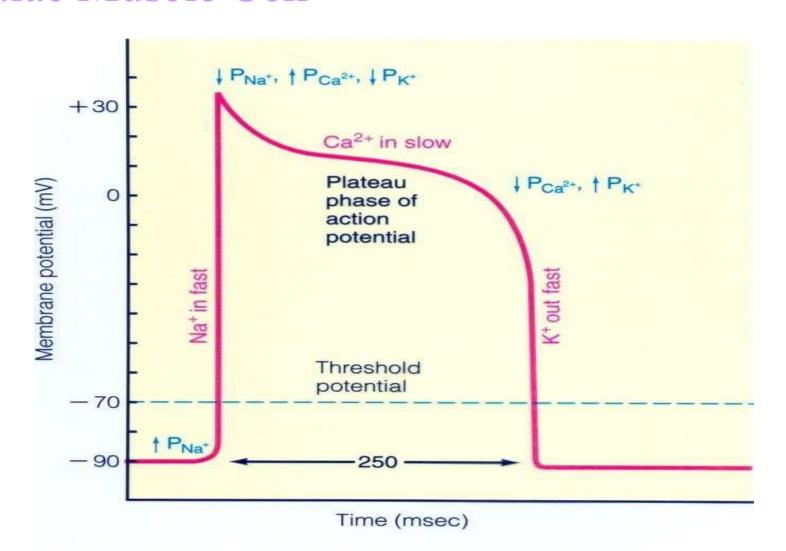
- Fibers extend from the A-V node through the A-V bundle into the ventricles
- Conduction is very fast due to numerous gap junctions located at the intercalated disks.
- The Purkinje fibers have the lowest intrinsic pacemaker rate, yet they
 are the fastest conducting fibers in the heart.
- They resemble ordinary cardiac muscle cells but possess a larger diameter, which facilitates rapid impulse conduction.
- Additionally, they contain numerous gap junctions, while the SA and AV nodes have fewer gap junctions, leading to slower conduction in those regions.

A-V Bundles

- Normally one-way conduction through the bundles
 - In the atrioventricular (AV) bundle, electrical conduction normally proceeds in one direction only—from the atria to the ventricles.
 - If an impulse were to **travel backward**, it would reach regions of the conduction system that are in the **absolute refractory period**, during which **cardiac cells cannot be re-excited**.
 - This mechanism ensures one-way conduction and maintains the coordinated rhythm of the heartbeat.
- Only conducting path between atria and ventricles is A-V node → A-V bundle
- Divides into left and right bundles
- Transmission time between A-V bundles and last of ventricular fibers is 0.06 second (QRS time)
 - This means that it takes about **0.06 seconds (60 milliseconds)** for the **electrical impulse** to travel **from the A-V bundle (Bundle of His)** through the **right and left bundle branches** and then through the **Purkinje fibers** to reach **all the ventricular muscle fibers**.

(a) Anterior view of frontal section

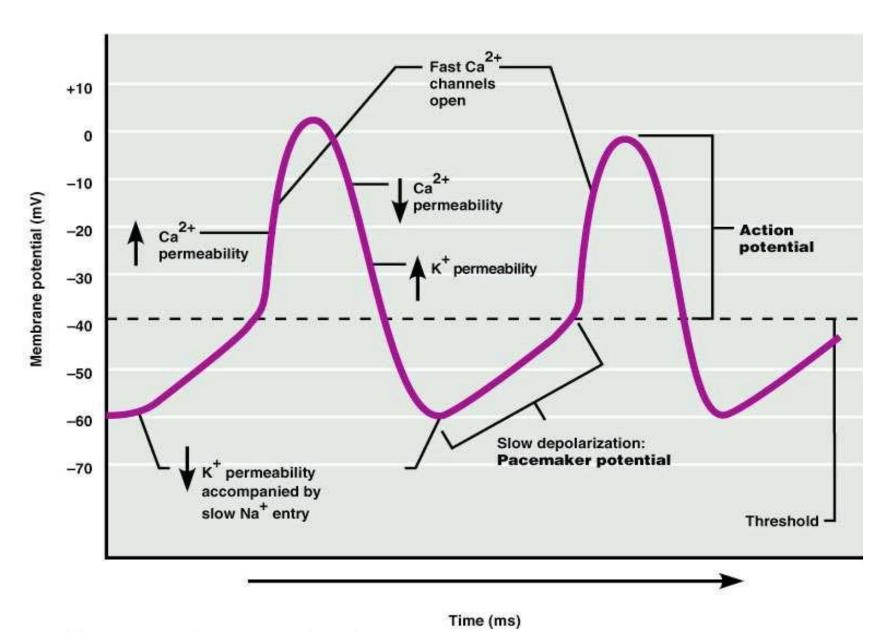
(b) Pacemaker potentials and action potentials in autorhythmic fibers of SA node20.10b


Mechanism of Intrinsic Activity

- Structurally, autorhythmic cells are round, have fewer intercalated discs and gap junctions, and lack contractile filaments, which means they cannot contract.
- Functionally, these cells are leaky to sodium (Na⁺) during phase 4, sodium slowly enters through "funny" Na⁺ channels (If).
- Because of this, the **resting membrane potential** does not reach **-90 mV** as in contractile cells but remains around **-60 mV**.
- This **gradual Na**⁺ **influx** causes **slow depolarization** during **phase 4** until the cell reaches **threshold potential**.
- In contractile cells, fast depolarization (phase 0) results from voltage-gated Natchannel activation, involving both activation (extracellular) and inactivation (intracellular) gates.
- However, in pacemaker cells, depolarization occurs slowly, allowing the inactivation gates to close before activation occurs – thus, voltage-gated Na⁺ channels do not open.
- Instead, slow voltage-gated Ca²⁺ channels open, producing the slow depolarization of phase O in SA and AV nodal cells

Mechanism of Intrinsic Activity

- There is **no plateau phase** in pacemaker cells.
- Repolarization (phase 3) follows due to K⁺ efflux, returning the membrane toward its resting potential.
- This entire cycle forms the pacemaker potential or slow-response action potential.
- Resting membrane potentials:
 - SA node: approximately **-60 mV** (least negative)
 - AV node: slightly more negative
 - Purkinje fibers: most negative
- Slope of phase 4 depolarization:
 - Steepest in the SA node (fastest rate)
 - Less steep in the AV node
 - **Shallowest** in the **Purkinje fibers** (slowest rate)

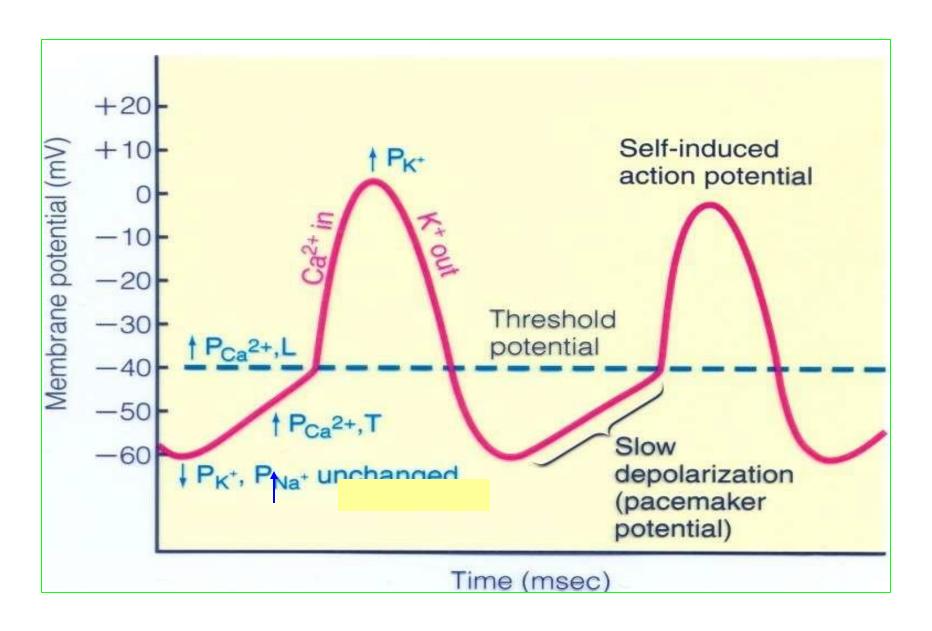

Fast Response Action Potential of Contractile Cardiac Muscle Cell

Fast Response Action Potential of Contractile Cardiac Muscle Cell

- This slide shows the **contractile cardiac muscle (fast-response)** action potential, which has five phases: 0, 1, 2, 3, and 4.
- In phase 4, the membrane potential is stable (resting) rather than slowly depolarizing; it is not driven by a Na⁺ leak.
- This slide itself illustrates the fast-response action potential typical of contractile cells.
- This is not what was said in the lecture.

Pacemaker & Action Potentials of the Heart

Pacemaker & Action Potentials of the Heart

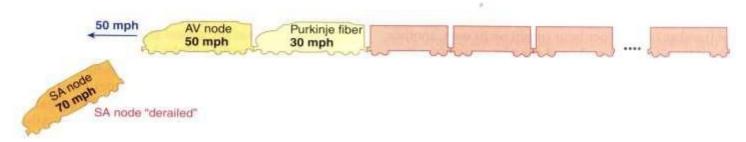

- This slide shows the **slow-response action potential**, also known as the **pacemaker potential**.
- In this type, the cell reaches threshold gradually, because the inactivation gate closes before the activation gate opens for the voltage-gated Na⁺ channels.
- As a result, Na⁺ does not enter the cell through these channels.
- Instead, slow voltage-gated Ca²⁺ channels open, allowing Ca²⁺ influx during phase O.
- Phase O: Increased Ca²⁺ permeability (conductance) through L-type Ca²⁺ channels causes slow depolarization.
- Phase 4: There is a slow Na⁺ leak through funny Na⁺ channels (If), producing gradual depolarization toward threshold.
- Phase 3: K⁺ permeability increases and Ca²⁺ permeability decreases, leading to repolarization.

25

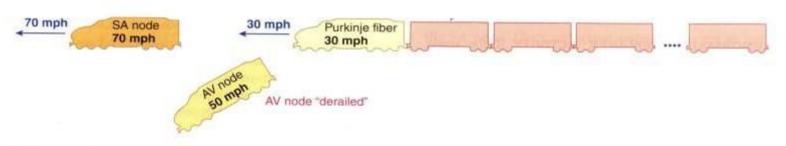
Pacemaker & Action Potentials of the Heart

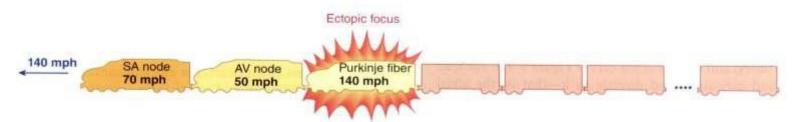
- Because these cells can **generate impulses spontaneously**, they are called **autorhythmic cells**.
- This type of action potential occurs in both the **SA node** and the **AV node**, but with subtle differences:
 - The AV node begins from a more negative potential,
 - Takes longer to reach threshold, and
 - Therefore, depolarizes more slowly.
- Although the SA and AV nodes share the same basic pattern, the AV node has
 a less steep slope during phase 4.
- The slope (ΔV/ΔT) represents the rate of voltage change over time:
 - The AV node has a smaller slope than the SA node.
 - By contrast, contractile muscle fibers have a very steep slope during phase O, reflecting their rapid depolarization compared to slow-response cells.

Slow Response Action Potential (Pacemaker Potential)



Intrinsic Rate & Speed of Conduction of the Components of the System


- SA node: 60–80 action potentials/min (primary & fastest Pacemaker)
- AV node: 40–60 action potentials/min
- Purkinje: 15–40 action potentials/min (slowest pacemaker)
- Conduction Speed:
 - **SA node:** slow speed of conduction
 - Ventricular and Atrial muscle moderate speed
 - AV node: slowest speed of conduction
 - Purkinje fibers: fastest speed of conduction
- Ectopic Pacemaker Abnormal site of pacemaker


(a) Normal pacemaker activity: Whole train will go 70 mph (heart rate set by SA node, the fastest autorhythmic tissue).

(b) Takeover of pacemaker activity by AV node when the SA node is nonfunctional: Train will go 50 mph (the next fastest autorhythmic tissue, the AV node, will set the heart rate).

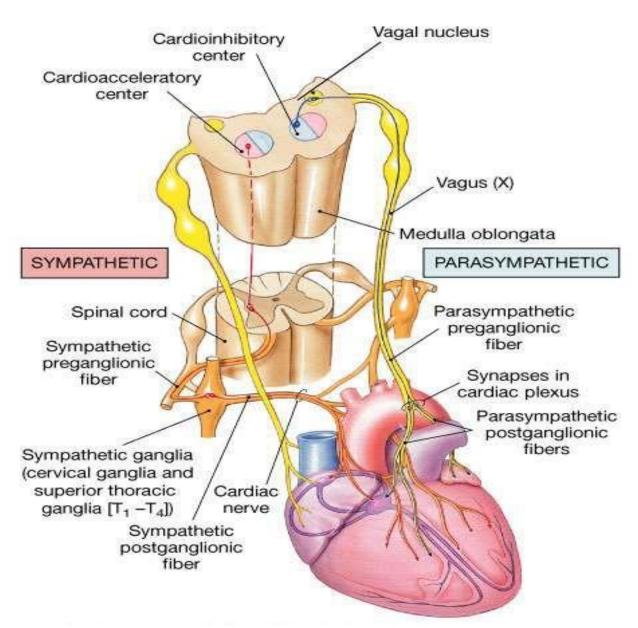
(c) Takeover of ventricular rate by the slower ventricular autorhythmic tissue in complete heart block: First part of train will go 70 mph; last part will go 30 mph (atria will be driven by SA node; ventricles will assume own, much slower rhythm).

(d) Takeover of pacemaker activity by an ectopic focus: Train will be driven by ectopic focus, which is now going faster than the SA node (the whole heart will be driven more rapidly by an abnormal pacemaker).

Pacemaker Hierarchy & Ectopic Activity in the Heart

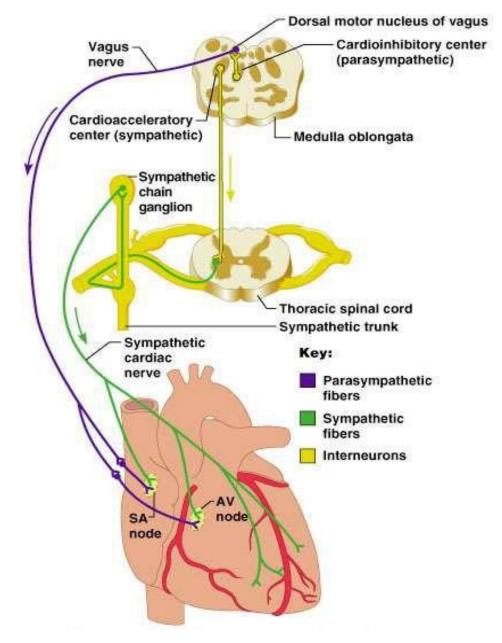
- The sinoatrial (SA) node is known as the normal pacemaker of the heart. as
 the SA node is the fastest component of the conduction system.
- If the SA node becomes damaged or dysfunctional, the atrioventricular (AV)
 node can assume the pacemaker role.
- In this case, it is termed an ectopic pacemaker, since it lies outside the normal pacemaking site.
- If the AV node is also impaired, the Purkinje fibers may generate impulses and act as the pacemaker, though this is still ectopic and occurs at a much slower rate.
- Occasionally, another region within the ventricles may begin firing impulses faster than the SA node. This abnormal site is called an ectopic focus.
- Although it can cause the ventricles to contract more rapidly, it is not considered normal because it originates outside the SA node.

Role of Purkinje Fibers in Rapid Ventricular Conduction and Synchronous Contraction


- The Purkinje fibers exhibit the fastest conduction speed because they
 possess a large diameter, comparable to that of contractile cardiac
 muscle fibers.
- Although their intrinsic pacemaker rate is the slowest, their conduction velocity is the highest among all components of the conduction system.
- When the impulse reaches the Purkinje fibers, it is transmitted rapidly and almost simultaneously to all regions of the ventricles.
- This ensures that **both ventricles contract together**, allowing the heart to function as a **single**, **coordinated pump**.
- Simultaneous ventricular contraction generates high intraventricular pressure, producing an effective and powerful pumping action.

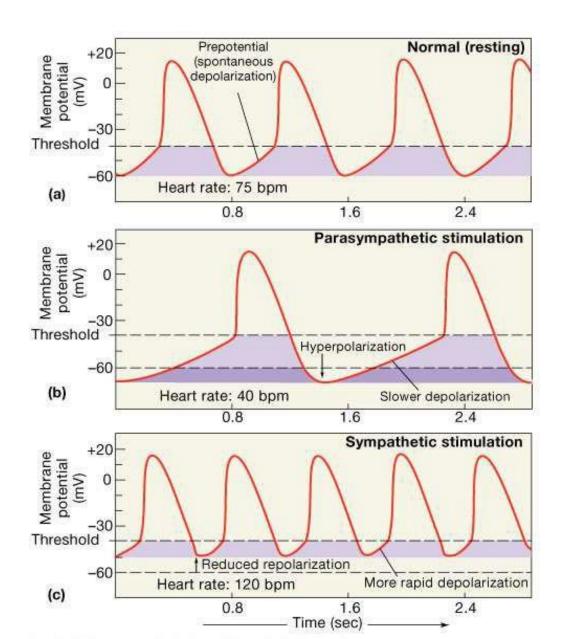
Ventricular Fibrillation and the Importance of Coordinated Conduction

- If the impulse were conducted to different ventricular fibers at **different times**, some regions would **contract while others relax**, leading to **ventricular fibrillation**.
- In ventricular fibrillation, the ventricular muscle fibers contract independently and irregularly, resulting in a loss of effective pumping and is potentially fatal.
- This can occur during myocardial infarction (heart attack) and requires immediate medical intervention.
- As mentioned earlier, the A-V node introduces a conduction delay, ensuring that atrial contraction is completed before ventricular contraction begins.


Autonomic Innervation of the Heart

- The heart receives parasympathetic innervation from the vagus nerve (cranial nerve X), which primarily supplies the atria, SA node, and AV node, with minimal innervation to the ventricles.
- In contrast, sympathetic fibers arise from the cardiac plexus, originating in the cervical and upper thoracic ganglia (T1-T4), and innervate all regions of the heart.

Extrinsic Innervation of the Heart


- Vital centers of medulla oblongata
 - 1. Cardiac Center
 - Cardioaccelerator center: Activates sympathetic neurons that increase HR and myocardial contractility.
 - Cardioinhibitory center: Activates parasympathetic neurons that decrease HR
- Cardiac center receives input from higher centers (particularly the hypothalamus), which monitors blood pressure and dissolved gas concentrations

Extrinsic Innervation of the Heart

- Both the sympathetic and parasympathetic nerves that regulate cardiac activity originate from the medulla oblongata.
- The parasympathetic influence on contractility is minimal because the vagus nerve primarily innervates the atria and conduction system, with little or no supply to the ventricles.
- Therefore, it mainly affects the rate of contraction, not the force.

Pacemaker Function

Normal Pacemaker & Parasympathetic Stimulation

1. Normal Pacemaker

 Represents the normal activity of the sinoatrial (SA) node, which initiates each heartbeat under resting conditions.

2. Parasympathetic Stimulation

- The parasympathetic neurotransmitter, acetylcholine (ACh), increases K⁺ permeability and decreases Na⁺ and Ca²⁺ permeability.
- Increased K⁺ efflux makes the membrane potential more negative (hyperpolarized), around -65 to -70 mV.
- Reduced Na⁺ and Ca²⁺ influx slows phase 4 depolarization, delaying the threshold potential.
- As a result:
 - The rate of depolarization decreases.
 - The heart rate decreases (negative chronotropic effect).

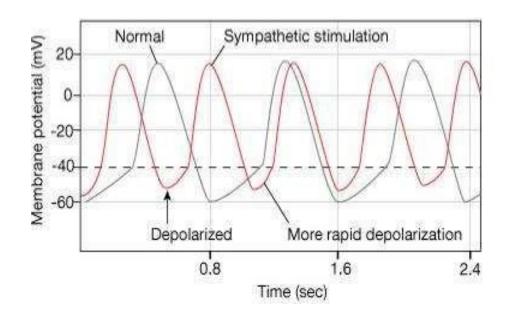
Normal Pacemaker & Parasympathetic Stimulation

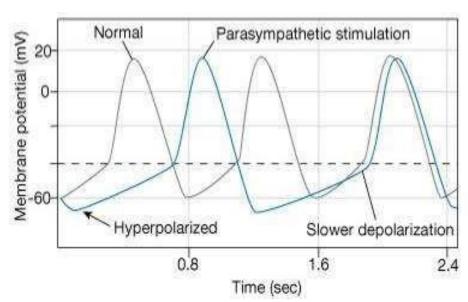
- Since the vagus nerve does not innervate the ventricles, ventricular contractility remains unaffected.
- Summary of Parasympathetic Effects:
 - Chronotropic (rate): Negative $\rightarrow \downarrow$ heart rate
 - Inotropic (contractility): Minimal effect (atria only)
 - Dromotropic (conduction): Negative $\rightarrow \downarrow$ conduction velocity (mainly in atria and AV node)
- Thus, parasympathetic stimulation reduces SA node firing rate, slows AV conduction, and decreases atrial contractility.

Sympathetic Stimulation

3. Sympathetic Stimulation

- The sympathetic neurotransmitters norepinephrine and epinephrine increase Na⁺ and Ca²⁺ permeability while reducing K⁺ permeability.
- Consequences:
 - The slow depolarization phase (phase 4) becomes steeper and faster.
 - The resting membrane potential becomes less negative (~-55 mV).
 - The rate of depolarization increases, leading to a faster heart rate (positive chronotropic effect).
- Because the sympathetic fibers also innervate the ventricles, they:
 - Increase intracellular and sarcoplasmic Ca²⁺ levels,
 - Enhance the force of contraction (positive inotropic effect), and
 - Increase conduction velocity (positive dromotropic effect).

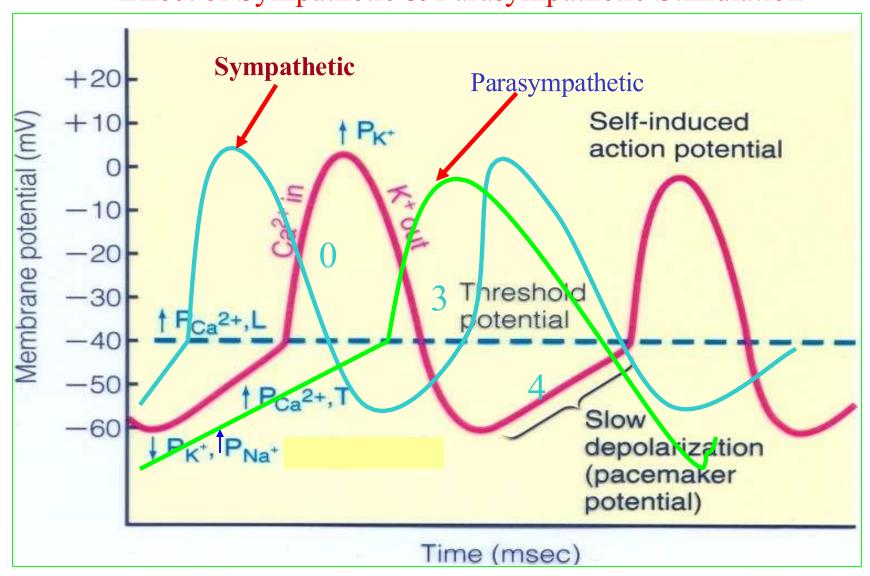

Sympathetic Stimulation


- Summary of Sympathetic Effects:
 - **Chronotropic:** Positive $\rightarrow \uparrow$ heart rate
 - Inotropic: Positive → ↑ contractility
 - Dromotropic: Positive → ↑ conduction speed
- In all cases, the shape of the action potential peak remains unchanged.
- The differences appear in:
 - The resting membrane potential,
 - The rate (slope) of phase 4 depolarization, and
 - The time required to reach threshold.

Autonomic Neurotransmitters Affect Ion Flow to Change Rate

- Sympathetic increases heart rate by ↑ Ca⁺² & I_f channel (net Na⁺) flow
- Parasympathetic decreases rate by ↑ K⁺ efflux & ↓ Ca⁺² influx

What part of the graph is not changed by autonomic influences?


Autonomic neurotransmitters affect ion flow to change rate

- Under parasympathetic stimulation, there is an increase in K⁺ efflux and a decrease in Na⁺ and Ca²⁺ influx.
- The phase O of the action potential does not change.
- However, the rate of depolarization and the resting membrane potential do change:
- During parasympathetic activity, the cell becomes hyperpolarized (more negative).
- During sympathetic activity, the cell becomes depolarized (less negative) due to increased Na⁺ and Ca²⁺ permeability.

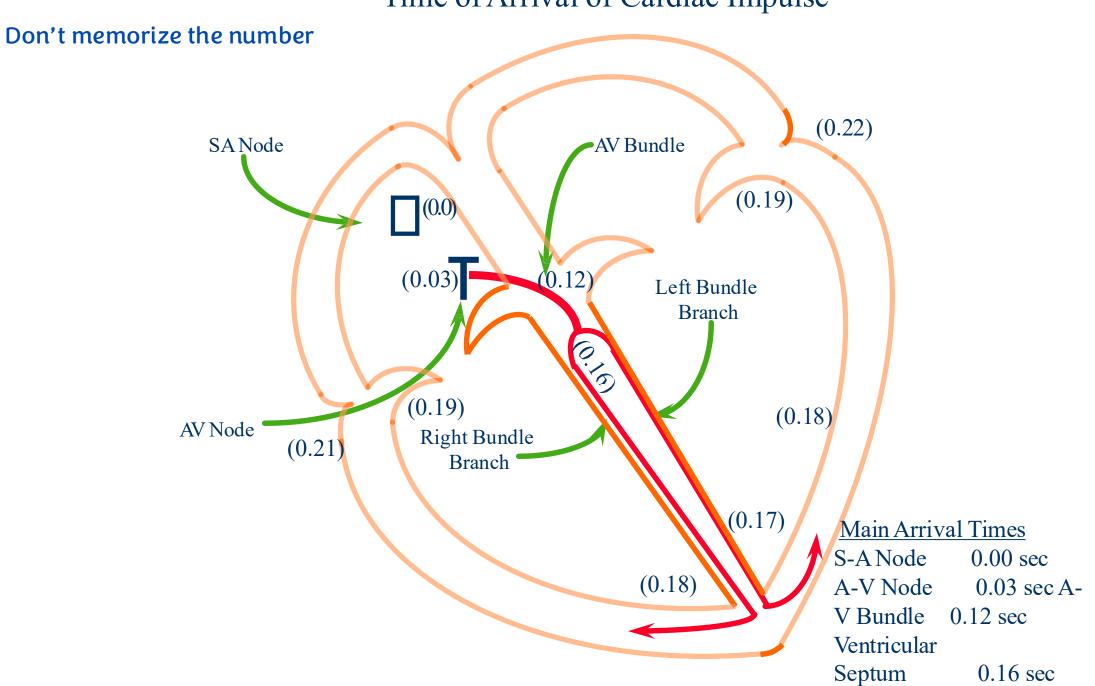
Effect of autonomic nerve activity on the heart

Region affected	Sympathetic Nerve	Parasympathetic Nerve	
SAnode	Increased rate of diastole depolarization; increased cardiac rate	Decreased rate of diastole depolarization; Decreased cardiac rate	
AV node	Increase conduction rate	Decreased conduction rate	
Atrial muscle	Increase strength of contraction	Decreased strength of contraction	
Ventricular muscle	Increased strength of contraction	No significant effect	

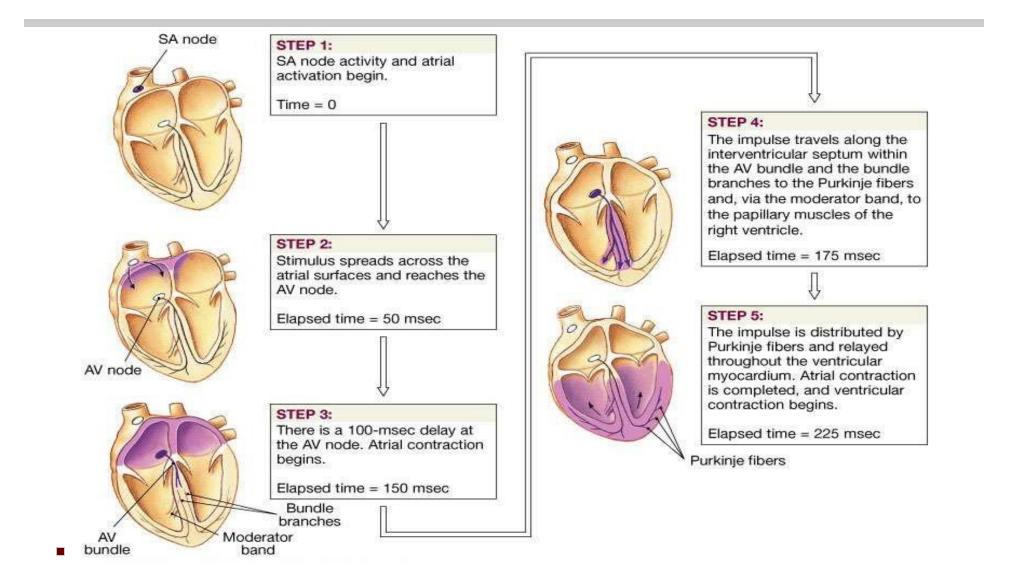
Effect of Sympathetic & Parasympathetic Stimulation

Regulation of the Heartbeat

- Sympathetic from the cardiac plexus supplies all parts of the heart (atria, ventricle and all parts of the conduction system).
- Parasympathetic from Vagus nerves supply mainly the atria, SA and AV nodes, very little supply to ventricles.
- Sympathetic: increase the permeability of the cardiac cells to Na⁺ and Ca⁺⁺ i.e. Positive **Chronotropic** and positive **Inotropic** action.
- Parasympathetic: Increase the permeability of the cardiac cells to K⁺ and decrease its permeability to Na⁺ and Ca⁺⁺.
- Negative Chronotropic effect and ?? Inotropic effect.
- Ventricular Escape and Overdrive suppression.


Regulation of the Heartbeat

- When the parasympathetic system is strongly stimulated for example, due to excessive vagus nerve activation it can cause the heart rate to slow dramatically or even stop temporarily.
- This may occur if pressure is applied to the carotid sinus, which triggers vagal stimulation.
- During strong vagal stimulation:
 - The heart stops beating temporarily.
 - The person may faint due to the lack of blood flow.
- After about 15-30 seconds, the heart resumes beating but at a slower rate. This happens because:
 - The **Purkinje fibers** in the ventricles are **not** innervated by the vagus nerve.
 - When the higher pacemaker centers (SA or AV node) stop firing, the Purkinje fibers resume their own intrinsic rate (15-40 beats per minute).


Regulation of the Heartbeat

- Normally, the Purkinje fibers are suppressed by the faster rate of the SA node or AV node – a mechanism known as overdrive suppression.
- When the higher pacemakers cease activity, the Purkinje fibers "escape" this inhibition and begin generating their own impulses.
- This phenomenon is known as ventricular escape.

Time of Arrival of Cardiac Impulse



Impulse Conduction through the Heart

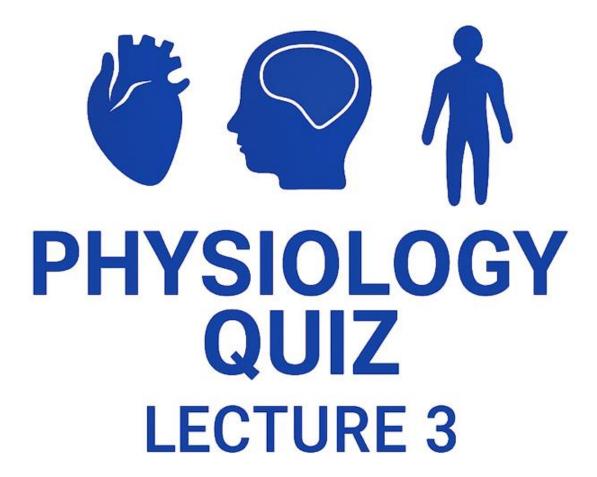
The heart is approximately 15 cm long. The Purkinje fibers are rectangular in shape, resembling normal contractile muscle cells in appearance.

Tissue	Conduction rate (m/s)
Atrial muscle	0.3
Atrial pathways	1
AV node	0.05
Bundle of His	1
Purkinje system	4
Ventricular muscle	0.3-0.5

Sinus Node is Cardiac Pacemaker

- Normal rates of discharge:
 - Sinus node 70–80/min.
 - A-V node 40–60/min.
 - Purkinje fibers 15–40/min.
- Sinus node is pacemaker because of its faster discharge rate
- Intrinsic rate of subsequent parts is suppressed by "Overdrive Suppression"

Ectopic Pacemaker


- This is a portion of the heart with a more rapid discharge than the sinus node.
- Also occurs when transmission from sinus node to A-V node is blocked (A-V block).
- During sudden onset of A-V block, sinus node discharge does not get through, and next fastest area of discharge becomes pacemaker of heartbeat (Purkinje system).
- Delay in pickup of the heartbeat is the "Stokes-Adams" syndrome. New pacemaker is in A-V node or penetrating part of A-V bundle.

Parasympathetic Effects on Heart Rate

- Parasympathetic (vagal) nerves, which release acetylcholine at their endings, innervate S-A node and A-V junctional fibers proximal to A-V node.
- Causes hyperpolarization because of increased K⁺ permeability in response to acetylcholine.
- This causes decreased transmission of impulses maybe temporarily stopping heart rate.
- Ventricular escape occurs.

Sympathetic Effects on Heart Rate

- Releases norepinephrine at sympathetic ending.
- Causes increased sinus node discharge (Chronotropic effect).
- Increases rate of conduction of impulse (Dromotropic effect).
- Increases force of contraction in atria and ventricles (Inotropic effect).

Scan the QR code or click it for FEEDBACK

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			
V1 → V2			