Test Bank for first 4 lectures by abdallah alanzy

- 1. All of the following are known to cause vasodilation in local tissues EXCEPT:
- A. Endothelin-1 release
- B. Adenosine release
- C. Nitric oxide release
- D. Accumulation of CO₂ in tissue
- E. Elevated potassium ions in interstitial fluid

Correct answer: A Endothelin-1 -> strong Vaso constrictor

- 2. When blood supply to a tissue is briefly occluded and then restored, blood flow to that tissue transiently increases above normal. This phenomenon is known as:
- A. Functional sympatholysis
- B. Reactive hyperemia
- C. Ischemic compensation
- D. Active hyperemia
- E. Autoregulation

Correct answer: B

- 3. A patient has bounding peripheral pulses and a "water-hammer" pulse pressure. Blood pressure is 160/50 mmHg. These findings are most consistent with which valvular disorder?
- A. Aortic stenosis
- B. Mitral regurgitation
- C. Aortic regurgitation
- D. Mitral stenosis
- E. Tricuspid regurgitation

Correct answer: C In aortic regurgitation, blood leaks back into the left ventricle during diastole → diastolic pressure falls. At the same time, the LV ejects a larger volume during systole → systolic pressure rises

- 4. Which substance, produced by endothelial cells, causes relaxation of vascular smooth muscle by increasing cGMP levels?
- A. Thromboxane A₂
- B. Nitric oxide
- C. Norepinephrine
- D. Angiotensin II
- E. Endothelin

Correct answer: B

- 5. During dynamic exercise, systolic blood pressure rises while diastolic pressure remains the same or falls slightly. What happens to pulse pressure and why?
- A. Pulse pressure increases due to increased stroke volume
- B. Pulse pressure decreases due to vasodilation
- C. Pulse pressure remains unchanged due to baroreceptor reflexes
- D. Pulse pressure decreases due to shorter diastole

اللهم اصلح قلوبنا، واغفر ذنوبنا، وبارك لنا في أوقاتنا وأعمالنا

E. Pulse pressure increases due to increased blood viscosity

PP = 54 stoly - Diastole **Correct answer: A**

- 6. A trauma patient in hypovolemic shock has a blood pressure of 90/70 mmHg. What is the primary reason for the narrowed pulse pressure in this patient?
- A. Increased arterial stiffness
- B. Decreased stroke volume due to low preload
- C. Excessive vasodilation
- D. Compensatory tachycardia
- E. Increased contractility

IPP -> & stoke Volume Correct answer: B

- An elderly man with atherosclerotic narrowing of his carotid artery has a bruit audible over the artery. What is the cause of this bruit?
- A. Increased turbulence of blood flow due to the narrowed vessel
- B. Laminar flow at the site of the plaque
- C. High blood viscosity causing resistance
- D. Enhanced autoregulation of blood flow in the carotid
- E. Vibration of the arterial wall from high pressure

audible - turbulence Correct answer: A

- Which growth factor is most important for stimulating new blood vessel formation (angiogenesis) in tissues chronically lacking adequate perfusion?
- A. Vascular Endothelial Growth Factor (VEGF)
- B. Epidermal Growth Factor (EGF)
- C. Angiotensin II
- D. Norepinephrine
- E. Nitric oxide

Correct answer: A

- Which statement correctly describes laminar blood flow in a vessel?
- A. Laminar flow generates audible vibrations in the vessel
- B. Flow velocity is uniform across the vessel lumen
- C. The fluid moves in concentric layers, with no mixing between layers
- D. Fluid particles move randomly in all directions
- E. The highest velocity is at the vessel wall

laminar , silent/Parabolic Velocity Correct answer: C

- 10. In which segment of the circulatory system does the largest drop in blood pressure occur?
- A. Large arteries
- **B.** Capillaries
- C. Arterioles

D. Veins E. Aorta

arterioles + high Resestance **Correct answer: C**

- 11. During heavy exercise, sympathetic output is high, yet arterioles in active muscles dilate to provide more blood flow. What explains this vasodilation in active skeletal muscles?
- A. Parasympathetic signals override sympathetic effects in active muscle
- B. Local metabolic factors in muscle override sympathetic vasoconstriction
- C. Myogenic responses (stretch) to high pressure cause dilation
- D. Sympathetic β₁-receptors cause muscle vasodilation
- E. Complete withdrawal of sympathetic tone to active muscles

Correct answer: B

- 12. Which organ's circulation features two capillary beds in series (one after the other)?
- A. Brain
- B. Kidnev
- C. Liver
- D. Heart
- E. Lungs

Correct answer: B

- 13. Which vessels are primarily responsible for regulating blood flow into capillary beds and are the major contributors to total peripheral resistance?
- A. Capillaries
- B. Large elastic arteries
- C. Arterioles
- D. Venules
- E. Medium muscular arteries

arterioles + high Pesestance **Correct answer: C**

- 14. Which organ is considered a "reconditioning" organ that normally receives blood flow far in excess of its own metabolic needs (allowing it to adjust the composition of blood)?
- A. Brain
- B. Spinal cord
- C. Kidneys
- D. Heart
- E. Skeletal muscle

Correct answer: C

15. An older patient has gradual occlusion of his left coronary artery over many years but does not experience a myocardial infarction. Which adaptation most likely prevented ischemic injury to the heart muscle?

- A. Hypertrophy of cardiac myocytes to reduce oxygen demand
- B. Collateral blood vessel development bypassing the occlusion
- C. Arteriolar constriction in the heart to limit blood flow
- D. Increased blood viscosity improving oxygen delivery
- E. Increased heart rate maintaining perfusion

- 16. If the resistance in an organ's arterioles doubles (and the pressure gradient is unchanged), what happens to the blood flow to that organ?
- A. It is unchanged
- B. It decreases to about half
- C. It increases two-fold
- D. It decreases to about one-quarter
- E. It increases slightly

Correct answer: B

下二条 力 年 4 年 4 年

- 17. Which organ has the **most effective** autoregulation of blood flow, able to keep flow relatively constant across a wide range of perfusion pressures?
- A. Skin
- B. Brain
- C. Liver
- D. Skeletal muscle
- E. Heart

Correct answer: B

- 18. A 25-year-old woman with severe iron-deficiency **anemia** is noted to have a faint systolic murmur. Which of the following best explains the murmur in this patient?
- A. Hyperdynamic left ventricular contraction due to anemia
- B. Turbulent blood flow due to decreased blood viscosity
- C. Delayed closure of the aortic valve
- D. Impaired autoregulation in systemic circulation
- E. High blood viscosity causing sluggish flow

Correct answer: B Viscosity of Turbulent

- 19. An arteriovenous fistula (direct connection between an artery and vein) has what effect on systemic vascular resistance?
- A. It increases resistance by adding an extra pathway
- B. It decreases resistance by allowing blood to bypass arterioles
- C. It initially increases then decreases resistance
- D. It increases only pulmonary resistance
- E. It has no effect on total resistance

Correct answer: B

the high-resistance arterioles are skipped, the total systemic vascular resistance decreases.

20. A 70-year-old man has a blood pressure of 150/90 mmHg. What is the approximate				
mean arterial pressure (MAP) in this individual?				
A. 140 mmHg				
B. 100 mmHg				
C. 110 mmHg				
D. 90 mmHg				
E. 120 mmHg				
Correct answer: C MAP = 2 Diastolic + 1 Systolic				

- Correct answer: C MAP = 2 Diastolic + 1 3 Systolic
- 21. A patient in hypovolemic shock has pale, cool skin. What mechanism causes this skin finding?
- A. Excess perfusion of the skin
- B. Intense sympathetic vasoconstriction of cutaneous vessels
- C. Parasympathetic activation of cutaneous arteries
- D. Accumulation of local metabolites in skin
- E. Bradycardia induced by baroreceptors

 Correct answer: B 86000 shapped to Vital organs like Grain
- 22. Despite changes in arterial pressure, certain tissues adjust their vascular resistance to maintain a relatively constant blood flow. What is this phenomenon called?
- A. Reactive hyperemia
- B. Autoregulation
- C. Active hyperemia
- D. Sympathetic reflex
- E. Hysteresis

- 23. Which statement correctly describes the autonomic innervation of most systemic arterioles?
- A. Sympathetic stimulation causes vasodilation in most arterioles
- B. They are richly innervated by sympathetic fibers but have little to no parasympathetic innervation
- C. They receive both sympathetic and parasympathetic innervation equally
- D. Parasympathetic nerves primarily regulate arteriolar tone at rest
- E. Arterioles are not innervated; they only respond to local factors
- Correct answer: B Rem: Vasodilation manify from local metabolic factors
- 24. During strenuous exercise, which organ receives a substantially greater percentage of the cardiac output compared to resting conditions?
- A. Kidneys
- B. Brain
- C. Liver

- D. Skeletal muscle
- E. Skin

- 25. In the pulmonary circulation, low oxygen levels in alveoli cause:
- A. Vasoconstriction of pulmonary arterioles
- B. Vasodilation of pulmonary arterioles
- C. Systemic arterial vasoconstriction
- D. No change in vessel tone
- E. Reflex bradycardia

Correct answer: A

This hypoxic vasoconstriction redirects blood away from poorly ventilated areas toward better-oxygenated regions

- 26. All of the following conditions would increase blood viscosity EXCEPT:
- A. Severe anemia
- B. Polycythemia vera (high RBC count)
- C. Multiple myeloma (increased plasma proteins)
- D. High hematocrit
- E. Severe dehydration

Correct answer: A

- 27. Which of the following correctly describes the structure of capillaries?
- A. Single endothelial cell layer with no smooth muscle
- B. Thick walls with multiple smooth muscle layers
- C. Surrounded by a layer of cardiac muscle cells
- D. Containing valves to prevent backflow
- E. High content of elastic fibers

Correct answer: A

- 28. Which of the following factors is the most important regulator of cerebral blood flow under normal conditions?
- A. Sympathetic nervous activity
- B. Circulating epinephrine
- C. Arterial PCO₂ (carbon dioxide levels)
- D. Central venous pressure
- E. Arterial PO₂ (oxygen levels)

Correct answer: C

by:

Even small increases in CO2 cause strong

- 29. The dicrotic notch (incisura) observed in the aortic pressure waveform is caused
- A. Closure of the aortic valve
- B. Reflection of the pressure wave in peripheral arteries
- C. Opening of the aortic valve
- D. Closure of the mitral valve

E. Turbulent flow in the aorta

Correct answer: A

- 30. Chronic hypertension causes structural changes in blood vessels. How do small arteries and arterioles adapt to sustained high pressures?
- A. They become thinner-walled to allow more stretch
- B. They permanently dilate to accommodate higher pressure
- C. They undergo inward remodeling, reducing lumen diameter to normalize wall stress
- D. They decrease smooth muscle content over time
- E. They lengthen significantly to dissipate pressure

علشان تقل الشدّ على الجدار (wall stress) وما ينفجر الشريان. Correct answer: C

- 31. All of the following mechanisms aid in venous return to the heart EXCEPT:
- A. Standing absolutely still for a long period
- B. Sympathetic venous tone (venoconstriction)
- C. Presence of one-way valves in veins
- D. Contraction of leg muscles during movement
- E. Deep inspiration (negative intrathoracic pressure)

Correct answer: A

- 32. If arterioles in a certain tissue constrict, what will be the effect on the pressures in the arteries upstream and capillaries downstream in that tissue?
- A. Both upstream and downstream pressures will fall
- B. Upstream arterial pressure will rise, downstream capillary pressure will fall
- C. Upstream arterial pressure will fall, downstream capillary pressure will rise
- D. Pressures will remain unchanged due to autoregulation
- E. Both upstream and downstream pressures will rise

Correct answer: B + Resistance > + Slow to ca Pillary

- 33. Precapillary sphincters are small rings of smooth muscle located at the entrance to capillary beds. What is their primary function?
- A. Regulating blood flow into capillaries based on local tissue needs
- B. Maintaining constant flow regardless of tissue activity
- C. Preventing blood backflow into arterioles
- D. Generating high pressure to drive blood through capillaries
- E. Pumping blood in the absence of arterial pressure

- 34. Low-dose epinephrine infusion typically causes a decrease in diastolic blood pressure due to vasodilation in skeletal muscle. Which receptors mediate this vasodilatory effect of epinephrine on skeletal muscle blood vessels?
- A. β_2 -adrenergic receptors
- B. α₂-adrenergic receptors

- C. α₁-adrenergic receptors D. β₁-adrenergic receptors
- E. Muscarinic (M₃) receptors on endothelium

on skeletal muscle not on Blod Vessele > < 2 Correct answer: A

- 35. Mean arterial pressure (MAP) is closer to diastolic pressure than to systolic pressure because:
- A. The heart spends more time in diastole than systole during each cardiac cycle
- B. Systolic pressure is an overestimate of tissue perfusion
- C. Pulse pressure is generally small in magnitude
- D. Most of the blood volume is on the venous side
- E. Arteries dampen systolic pressure completely

Correct answer: A

مدة الدورة القلبية كاملة ≈ 0.8 ثانية ثانية (ثلث الوقت تقريبًا) Systole ≈ 0.27 ثانية (ثلثين الوقت تقريبًا) Diastole ≈ 0.53

- 36. During intense exercise, blood flow to skeletal muscles increases dramatically. The primary cause of this increased perfusion is:
- A. Sympathetic activation of α₁-receptors in muscle arterioles
- B. Rise in systemic arterial pressure during exercise
- C. Local release of vasodilator metabolites in active muscles
- D. Parasympathetic dilation of muscle arterioles
- E. Myogenic relaxation due to decreased transmural pressure

Correct answer: C

- 37. Which statement about resistances arranged in parallel (as in the systemic circulation among organs) is correct?
- A. Total resistance is less than the resistance of any single branch
- B. Total resistance equals the sum of individual resistances
- C. All organs in parallel receive different perfusion pressures
- D. Blood flow through each organ must be identical
- E. There is significant loss of pressure in major arteries in a parallel network

Correct answer: A Total Yesishanse = 1 the + 1 ...

- 38. How is continuous blood flow in capillaries maintained despite the intermittent output of the heart?
- A. Metarterioles provide an alternate route during cardiac diastole
- B. Elastic recoil of the large arteries (Windkessel effect) maintains flow during diastole
- C. Small arterioles contract rhythmically to push blood
- D. Capillaries store blood and release it steadily
- E. One-way valves in arteries ensure continuous forward flow

Correct answer: B

39. If the radius of a blood vessel is doubled (with all other factors constant), how will the blood flow through that vessel change?

A. It will remain unchar	nged		
B. It will increase by a	factor of 4		
C. It will increase by a	factor of 8		
D. It will increase by a	factor of 16		
E. It will double	0.1	- 0.4	~ .
Correct answer: D	R= Ent	K = 8 ME	R = Sel = >
40. All of the following	owing changes v	vill increase b	lood flow through

a vessel EXCEPT:

F=AP F=16 AP

- A. Increasing the pressure gradient along the vessel
- B. Decreasing the vessel length
- C. Decreasing blood viscosity
- D. Increasing the vessel radius
- E. Increasing hematocrit significantly

Correct answer: E

- 41. All of the following tend to increase pulse pressure EXCEPT:
- A. Increased arterial stiffness (decreased compliance)
- B. Increased stroke volume
- C. Exercise (increased contractility)
- D. Hyperthyroidism (high output state)
- E. Significant hemorrhage

in hemorrhage, blood volume and stroke volume fall **Correct answer: E**

- 42. Blood flow through the circulatory system is primarily driven by:
- A. One-way valves in the arterial system
- B. The pressure difference between the arterial and venous ends of the circulation
- C. High oxygen content in arterial blood
- D. The suction effect of the heart during diastole
- E. The body's gravitational field

- 43. Korotkoff sounds heard during blood pressure measurement are caused by:
- A. Laminar flow in the brachial artery
- B. Turbulent blood flow through a partially compressed artery
- C. Closure of the aortic valve
- D. Pulse pressure oscillations in the artery
- E. Resonance of the arterial wall

Correct answer: B Turbulent - andible

- 44. In severe hemorrhage, the body prioritizes blood flow to vital organs. Which organ's blood flow is best preserved until the latest stages of shock?
- A. Kidneys
- B. Brain

- C. Skin
- D. Skeletal muscle
- E. Intestines

- 45. A higher Reynolds number indicates a greater tendency for blood flow to become turbulent. Blood flow in a straight, smooth vessel will generally become turbulent when:
- A. Vessel diameter exceeds 1 cm
- B. Reynolds number is roughly greater than 2000
- C. Blood viscosity is very high
- D. Flow velocity is low
- E. Hematocrit drops below 40%

Correct answer: B

- 46. The ability of a blood vessel to change its volume with changes in pressure is known as:
- A. Elastance
- B. Compliance
- C. Contractility
- D. Wall tension
- E. Viscosity

Compliance = AV **Correct answer: B**

- 47. Which organ has the highest blood flow per unit weight of tissue (mL/min per 100 g) under resting conditions?
- A. Heart muscle
- B. Brain
- C. Kidney
- D. Liver
- E. Skeletal muscle

Correct answer: C

- 48. In an elderly patient with arteriosclerosis (stiffening of large arteries), which of the following changes in blood pressure is most likely present?
- A. Widened pulse pressure due to increased systolic pressure
- B. Low systolic and diastolic pressures
- C. Narrowed pulse pressure
- D. Elevated diastolic pressure with normal systolic pressure
- E. Reduced mean arterial pressure

arteriosclerosis & systolic Pressure > PP = \$P-DP **Correct answer: A**

49. Prolonged use of glucocorticoid medications (corticosteroids) has what effect on the vasculature?

- A. Increased capillary density in tissues
- B. Inhibition of new vessel formation (decreased vascularity)
- C. Enhanced nitric oxide release by endothelium
- D. Tendency for vasodilation and hyperemia
- E. Increased VEGF-mediated angiogenesis

Glucocorticoids inhibit angiogenesis by

Correct answer: B

- 50. Which of the following correctly describes a difference between veins and arteries?
- A. Veins have thinner walls and often contain valves, whereas arteries do not
- B. Veins recoil more elastically than arteries when stretched
- C. Veins carry oxygenated blood, while arteries carry deoxygenated blood
- D. Veins generally have higher internal pressure than arteries
- E. Veins have more smooth muscle and thicker walls than similar-sized arteries

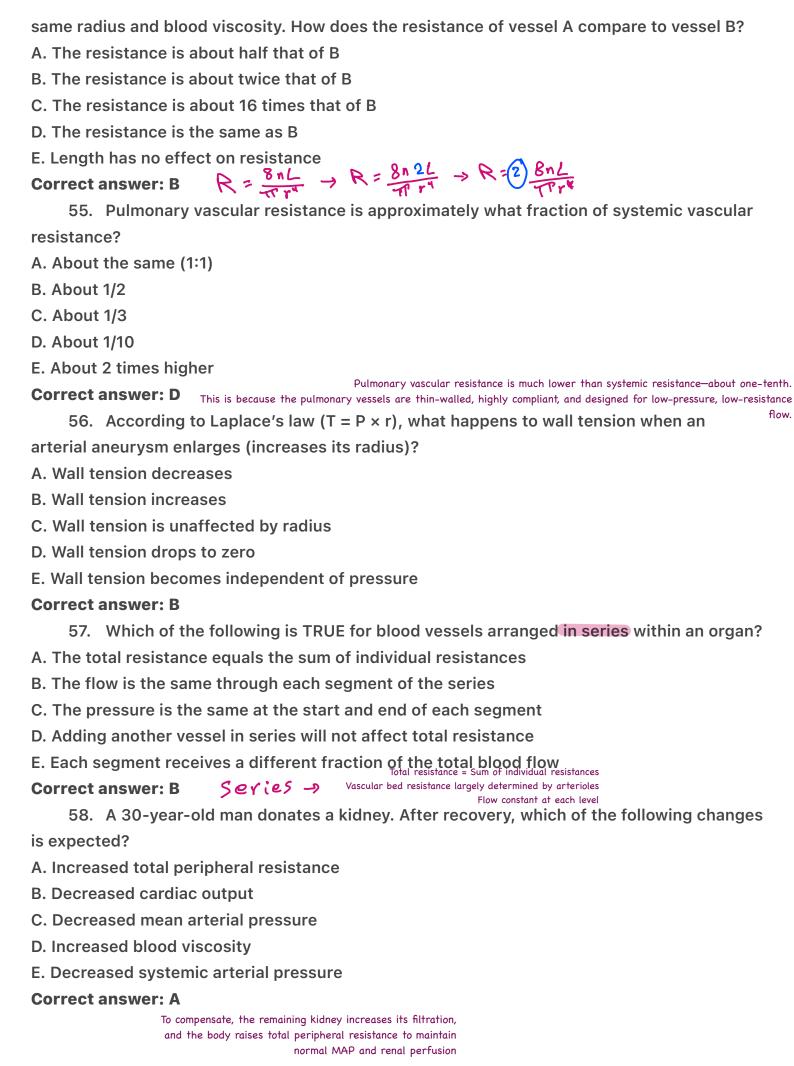
Correct answer: A

- 51. If total peripheral resistance is significantly decreased without a change in cardiac output, what will happen to mean arterial pressure (MAP)?
- A. MAP will increase
- B. MAP will decrease
- C. MAP will remain unchanged
- D. Pulse pressure will increase but MAP unchanged
- E. Blood flow will cease

Correct answer: B $\sqrt{T}PR = \frac{1MAP - RAP}{Q}$

52. An older patient has a blood pressure of 160/70 mmHg (pulse pressure 90 mmHg). The elevated pulse pressure in this patient is primarily due to:

- A. Reduced arterial compliance (stiff arteries) with age
- B. Increased blood viscosity
- C. Decreased cardiac contractility
- D. Narrowing of the aortic valve (stenosis)
- E. Reduced stroke volume


Correct answer: A

Stiff arteries cannot expand during systole \rightarrow systolic pressure rises, while diastolic pressure often falls or stays low.

- 53. During maximal exercise, blood flow to which organ is significantly decreased compared to resting values?
- A. Heart
- B. Kidneys
- C. Skin (in a cool environment)
- D. Active skeletal muscle
- E. Brain

Correct answer: B

54. A certain vessel (A) is twice as long as another similar vessel (B), but they have the

- 59. An expanding aortic aneurysm is at increasing risk of rupture because wall tension increases as radius increases. This principle is explained by:
- A. Poiseuille's law
- B. Laplace's law
- C. Boyle's law
- D. Frank-Starling mechanism
- E. Bernoulli's principle

Laplace's Low $(T = P \times r)$

- 60. A 22-year-old man stands up quickly and feels lightheaded. Which physiological change is the most immediate cause of his dizziness?
- A. A sudden drop in systemic vascular resistance
- B. Pooling of blood in the leg veins, reducing venous return
- C. A rapid decrease in heart rate upon standing
- D. An abrupt increase in cerebral blood flow
- E. A sudden drop in pulmonary arterial pressure

Correct answer: B

- 61. Which receptor mediates vasodilation in skeletal muscle arterioles during a "fight or flight" response (such as low-dose epinephrine release)?
- A. β₂-adrenergic receptors
- B. Muscarinic M₂ receptors
- C. α₁-adrenergic receptors
- D. β_1 -adrenergic receptors
- E. α₂-adrenergic receptors

Correct answer: A

- 62. A higher Reynolds number indicates a greater tendency for blood flow to become **turbulent**. Although blood density contributes to Reynolds number, which factors are most influential in determining turbulence?
- A. High viscosity and low velocity favor turbulence
- B. High velocity and large vessel diameter favor turbulence
- C. Low cardiac output and high hematocrit favor turbulence
- D. High blood density is the key determinant of turbulence
- E. High viscosity and small vessel diameter favor turbulence

Correct answer: B

Reynolds Number = PND

eriolar vasoconstriction and an

- 63. Which of the following hormones causes potent arteriolar vasoconstriction and an increase in total peripheral resistance?
- A. Atrial natriuretic peptide (ANP)
- B. Angiotensin II
- C. Histamine

- D. Bradykinin
- E. Nitric oxide

- 64. Which of the following statements about laminar versus turbulent blood flow is correct?
- A. Turbulent flow requires more pressure to drive blood flow than laminar flow
- B. Laminar flow tends to occur at high Reynolds numbers
- C. Turbulent flow is silent, whereas laminar flow produces murmurs
- D. Laminar flow has mixed fluid layers moving in all directions
- E. Turbulent flow is more energy-efficient than laminar flow

Correct answer: A

- 65. Which of the following circulatory arrangements is unique in that one organ receives blood that has first passed through another organ?
- A. Coronary circulation
- B. Renal circulation
- C. Cerebral circulation
- D. Hepatic (liver) circulation
- E. Skeletal muscle circulation

Correct answer: D

- 66. A 75-year-old man has a BP of 160/70 mmHg. His pulse pressure is increased primarily because of:
- A. Decreased arterial compliance (stiffer arteries) with age
- B. Reduced stroke volume
- C. Increased blood viscosity
- D. Aortic valve stenosis
- E. Enhanced arterial elasticity

Correct answer: A Compliance = ΔV Spaker

- 67. Blood flow to the skin is primarily regulated by:
- A. Sympathetic nervous system activity (for temperature control)
- B. Local metabolic demands of skin tissue
- C. Parasympathetic vasodilator fibers
- D. Myogenic autoregulation
- E. Endothelin release in the dermal vessels

- 68. During a prolonged, steady-state exercise, blood flow to the kidneys and digestive organs is reduced compared to resting levels. This reduction is primarily due to:
- A. Metabolic vasoconstriction in those organs
- B. Increased sympathetic outflow causing arteriolar constriction in the splanchnic and renal

beds

- C. Decreased arterial pressure during exercise
- D. Autoregulatory decrease in those organs' perfusion
- E. Passive collapse of vessels from muscle contractions

Correct answer: B

- 69. Compliance = $\Delta V/\Delta P$. Which vessels have the highest compliance, allowing them to accommodate large volumes of blood with only small pressure changes?
- A. Elastic arteries
- B. Arterioles
- C. Capillaries
- D. Veins
- E. Pulmonary arteries

Veins - have low AP so high compliance Value (BGOD reservoir) **Correct answer: D**

- 70. An elderly patient's carotid artery pulse pressure waveform shows an absent dicrotic notch. Which valvular pathology is most likely?
- A. Aortic regurgitation (incompetent aortic valve)
- B. Aortic stenosis (narrowed aortic valve)
- C. Mitral regurgitation
- D. Mitral stenosis
- E. Tricuspid regurgitation

Correct answer: A

- 71. The Windkessel effect refers to the:
- A. Reflex increase in heart rate when blood pressure falls
- B. Elastic recoil of large arteries that maintains blood flow during diastole
- C. Myogenic response of arterioles to stretch
- D. Compression of veins by skeletal muscle to aid venous return
- E. Active hyperemia in exercising muscle

Correct answer: B

- 72. Long-term exposure to high altitude leads to chronic low arterial O2. In the pulmonary circulation, this causes:
- A. Diffuse vasoconstriction of pulmonary arterioles and increased pulmonary arterial pressure
- B. Global vasodilation in pulmonary arterioles and decreased pulmonary pressure
- C. No change in pulmonary vascular resistance
- D. Recruitment of new pulmonary capillaries to reduce pressure
- E. Reflex systemic vasoconstriction

LPOR APCOR - Nasoconstriction **Correct answer: A**

73. A 32-year-old man has an arteriovenous fistula in his leg. How would this affect his

circulatory dynamics?

- A. It would decrease total peripheral resistance by shunting blood directly from artery to vein
- B. It would increase total peripheral resistance by adding another pathway
- C. It would decrease cardiac output due to blood bypassing capillaries
- D. It would cause reflex bradycardia
- E. It would elevate arterial blood pressure

Correct answer: A

- 74. The presence of **one-way valves** and the compressive action of skeletal muscles are mechanisms that:
- A. Increase arterial blood pressure
- B. Facilitate venous return to the heart
- C. Prevent arterial backflow during diastole
- D. Directly regulate capillary perfusion
- E. Reduce turbulent flow in arteries

Correct answer: B

- 75. Which of the following will decrease blood flow to an organ, assuming perfusion pressure is constant?
- A. Decreasing the length of the organ's blood vessels
- **B.** Decreasing the blood viscosity
- C. Increasing the radius of the arterioles
- D. Increasing arteriolar resistance via vasoconstriction
- E. Increasing the organ's metabolic activity

Correct answer: D

でよること

- 76. A 67-year-old man has isolated systolic hypertension due to **stiffening** of his arteries. Which of the following findings would be expected in his arterial pressures?
- A. Elevated systolic pressure with a widened pulse pressure
- B. Low diastolic pressure with a narrow pulse pressure
- C. Low systolic and diastolic pressures
- D. Elevated diastolic pressure and normal systolic pressure
- E. A large dicrotic notch on the aortic pressure waveform

- 77. In the coronary circulation of the left ventricle, the majority of blood flow occurs during which phase of the cardiac cycle and why?
- A. Systole, because ventricular contraction propels blood into coronary arteries
- B. Diastole, because contraction in systole compresses the coronary vessels
- C. Equally in systole and diastole, because flow is continuous
- D. Only during exercise, because coronary vessels collapse at rest
- E. Systole for the right coronary, diastole for the left coronary

- 78. Most systemic organs are arranged in parallel. Which organ is an exception in that it receives blood that has first passed through another organ?
- A. Brain
- B. Liver (via the hepatic portal circulation)
- C. Heart
- D. Kidneys
- E. Skeletal muscle

Correct answer: B

- 79. A 28-year-old man hyperventilates (breathes rapidly and deeply) for two minutes. He becomes lightheaded and nearly faints. The most likely cause is that hyperventilation:
- A. Lowers arterial CO₂, causing cerebral vasoconstriction and reduced brain blood flow
- B. Raises arterial O₂, causing cerebral vasodilation and steal phenomenon
- C. Activates baroreceptors, causing widespread vasodilation
- D. Increases intrathoracic pressure, impeding venous return to the heart
- E. Causes metabolic acidosis, reducing cardiac output

Correct answer: A

- 80. Which of the following best explains why the pressure pulsations diminish (dampen) as blood travels from the large arteries to the arterioles and capillaries?
- A. Decreased blood viscosity and turbulence
- B. High resistance and compliance of the vascular system in the periphery
- C. Increased sympathetic stimulation of small vessels
- D. Reflections of pressure waves in the microcirculation
- E. Reduction in cardiac output at the microvascular level

Correct answer: B

- 81. In a series arrangement of blood vessels (e.g., arteries → arterioles → capillaries within an organ), which of the following is constant at all levels?
- A. Pressure drop across each segment
- B. Flow rate (volume per minute) through each segment
- C. Blood pressure in each segment
- D. Resistance of each segment
- E. Velocity of blood flow in each segment

Total resistance = Sum of individual resistances Vascular bed resistance largely determined

Correct answer: B

82. An important benefit of the parallel arrangement of systemic circulation is that:

Series >

- A. Each organ receives fully oxygenated blood at roughly the same pressure as the aorta
- B. Total resistance is higher, which helps maintain blood pressure
- C. Blood flows through organs sequentially to maximize oxygen extraction
- D. Changes in one organ's blood flow do significantly impact others

E. Arterial pressure dro		rst organ in parallel 1. All organs receive blood of same composition
Correct answer: A	Rarallel +	Receive blood of same composition Blood flow to each organ independently adjusted
83. Which of the	following is a potent va	asoconstrictor released into the blood to help
regulate arterial blood	pressure?	
A. Angiotensin II		
B. Atrial natriuretic pep	tide (ANP)	
C. Prostacyclin		
D. Histamine		
E. Adenosine		
Correct answer: A		
84. The mean art	erial pressure (MAP)	is not simply the average of systolic and
diastolic pressures be	ecause:	
A. The heart spends a	bout two-thirds of th	e cardiac cycle in diastole at rest
B. Pulse pressure is ve	ery small in magnitud	le
C. Blood viscosity ske	ws the pressure dist	ribution
D. Systolic pressure is	higher in the large a	rteries than in the aorta
E. Venous pressure in	fluences the MAP sig	nificantly
Correct answer: A		
85. A 24-year-old	l sprinter has a resting	g heart rate of 55 bpm and a stroke volume of 90
mL. Which of the follow	ing is his approximate	e resting cardiac output and what primarily
determines it?		
A. 4.95 L/min, determir	ned by heart rate and s	stroke volume (HR × SV)
B. 2.0 L/min, determine	ed by total blood volum	ne
C. 7.5 L/min, determine	d by venous return on	ly
D. 3.6 L/min, determine	ed by oxygen demand o	of tissues
E. 10.0 L/min, determin	ed by blood pressure	
Correct answer: A	CO SHR.SV	n a 8x55 = 4.95
86. A higher hem	atocrit (e.g., in polycy	themia) affects blood flow by:
A. Increasing blood vis	cosity and thus increa	sing resistance to flow
B. Decreasing blood vis	scosity and thus decre	asing resistance
C. Predisposing to turb	ulence by itself	
D. Narrowing the blood	vessels reflexively	
E. Improving tissue oxy	gen delivery without a	affecting flow

87. The majority of the body's blood volume at any given time is found in the:

Correct answer: A

B. Heart (chambers)

A. Pulmonary circulation

C. Systemic veins and venules

D. Systemic arteries
E. Capillaries
Correct answer: C Veins > Plood reservicy
88. Failure of the venous valves in the lower extremities is likely to result in:
A. Venous pooling and development of varicose veins
B. Increased venous return to the heart
C. Decreased capillary pressure in the legs
D. A sudden drop in arterial blood pressure
E. Prevention of edema formation
Correct answer: A くりょう
89. According to Poiseuille's law, which variable has the greatest influence on the
resistance to blood flow in a vessel?
A. The vessel's radius
B. The vessel's length
C. The blood pressure
D. The type of vessel (artery vs. vein)
E. The blood viscosity
Correct answer: A
90. A key difference between laminar and turbulent blood flow is that turbulent flow:
A. Requires a greater pressure gradient to sustain the same flow
B. Is silent, whereas laminar flow is audible
C. Occurs at low Reynolds numbers
D. Has a parabolic velocity profile
E. Flows in smooth concentric layers
Correct answer: A
91. During a fight-or-flight response, which tissue experiences a decrease in blood
flow due to sympathetic vasoconstriction?
A. Skeletal muscle (active)
B. Skin and gastrointestinal tract
C. Cardiac muscle
D. Brain
E. Adrenal medulla
Correct answer: B
92. Which vessels serve as the major capacitance vessels, acting as a blood
reservoir in the body?

A. Arterioles

B. Capillaries

C. Pulmonary capillaries

D. Veins

E. Elastic arteries (e.g., aorta)

Correct answer: D

93. A 78-year-old man's arterial pulse is measured at the radial artery. Compared to the pressure pulse in the ascending aorta, the systolic pressure in the radial artery is:

- A. Slightly higher, due to wave reflection and decreased arterial compliance
- B. Much lower, due to resistance in large arteries
- C. Essentially identical, because arteries have negligible resistance
- D. Lower, because diastolic pressure is higher in peripheral arteries
- E. Non-pulsatile by the time it reaches the radial artery

Correct answer: A

As the pressure wave travels from the aorta to peripheral arteries (like the radial artery), wave reflection and stiffer peripheral arteries make the systolic pressure increase slightly.

- 94. Which factor is primarily responsible for the large increase in skeletal muscle blood flow during exercise?
- A. Increased local production of vasodilator metabolites (e.g., adenosine, K⁺) in muscle
- B. Parasympathetic activation of muscle arterioles
- C. Myogenic autoregulation from elevated blood pressure
- D. Sympathetic α₁-mediated vasodilation in muscle
- E. Baroreceptor stimulation increasing muscle perfusion

Correct answer: A

- 95. During prolonged standing, why might edema develop in the lower extremities?
- A. Increased venous pressure leads to increased capillary hydrostatic pressure and fluid filtration
- B. Decreased arterial pressure in the legs causes fluid leakage
- C. Excess muscle activity drives fluid out of capillaries
- D. Enhanced lymphatic drainage is overwhelmed by posture
- E. Baroreceptor reflex causes capillary permeability to increase

Correct answer: A

- 96. Most arterioles in the systemic circulation are richly innervated by sympathetic nerve fibers. What is the effect of sympathetic stimulation on arterioles?
- A. It causes vasoconstriction via α₁-adrenergic receptors, increasing resistance
- B. It causes vasodilation in most tissues via β₂-adrenergic receptors
- C. It has little effect on arteriolar tone
- D. It primarily affects veins, not arterioles
- E. It reduces arterial blood pressure by dilating arterioles

- 97. A tissue becomes highly active (e.g., exercising muscle), and its blood flow increases in proportion to its metabolic activity. This phenomenon is known as:
- A. Active hyperemia

- B. Autoregulation
- C. Reactive hyperemia
- D. Myogenic response
- E. Neurogenic hyperemia

- 98. In the microcirculation, the pressure pulsations from the heart are nearly eliminated. What two factors account for this damping of pulsatile flow by the time blood reaches the capillaries?
- A. The resistance of small vessels and the compliance of the arterial tree
- B. The high viscosity of blood and one-way valves in capillaries
- C. The increase in velocity and turbulent flow in arterioles
- D. The baroreceptor reflex and sympathetic tone
- E. The intermittent opening/closing of precapillary sphincters

Correct answer: A

- 99. A 72-year-old man with a blood pressure of 155/95 is started on a vasodilator drug that causes arteriolar dilation throughout the body. If his cardiac output does not change, what will happen to his mean arterial pressure?
- A. It will decrease, because total peripheral resistance is reduced
- B. It will increase, because flow to each organ increases
- C. It will remain the same, due to compensatory mechanisms
- D. It will increase, because pulse pressure narrows

E. It will increase only in the dilated organs

Correct answer: A $\sqrt{asolilator} \rightarrow TPR = \overline{G}$

- 100. An important benefit of arranging the systemic circulation in parallel (each organ supplied by an aortic branch) rather than in series is that:
- A. All organs receive blood of the same high oxygen content and nearly the same pressure
- B. Total peripheral resistance is higher, ensuring adequate blood pressure
- C. Blood flows from one organ directly to the next, optimizing nutrient use
- D. Downstream organs receive blood with higher CO₂ and metabolite levels
- E. A change in one organ's blood flow equally affects flow to other organs

Correct answer: A Ray (lel + 1. All organs receive blood of same composition 2. Blood flow to each organ independently adjusted