

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

PHYSIOLOGY

FINAL | Past Papers

All Material + Lab

(Book Questions Included)

Written by: Waleed Darawad
Ahmad Rami

Reviewed by: Abdallah Alrawwash
Mahmoud Hasan

﴿ وَلَقَدْ نَعَمَ أَنَّكَ يَضِيقُ صَدْرُكَ بِمَا يَقُولُونَ ﴾
فَسَيِّحٌ بِحَمْدِ رِبِّكَ وَكُنْ مِّنَ السَّاجِدِينَ ﴾

سبحان الله وبحمده، سبحان الله العظيم

Theoretical Material

Q1: If $[O_2]$ in arteries = 18, $[O_2]$ in veins = 14, CO = 6 L/min, Find V_{O_2} (mL/min)?

The question had no answers,
I added them myself (:

- A. 240 mL/min
- B. 2400 mL/min
- C. 24 mL/min

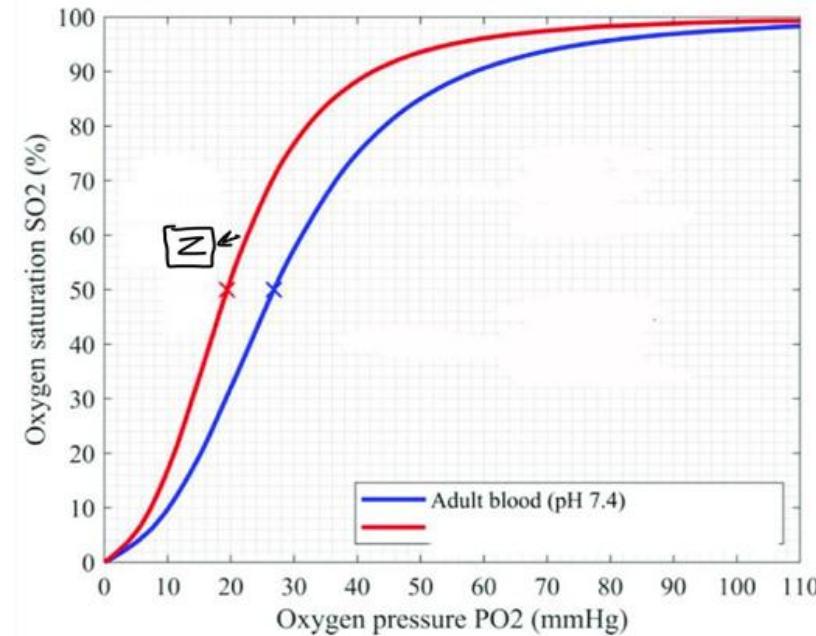
$$\dot{V}_{O_2} = CO \times (C_a - C_v)$$

Answer: A

Q2: Which of the following has the highest P_{50} ?

- A. HbA during exercise.
- B. HbF.
- C. Carboxyhemoglobin.
- D. Myoglobin.
- E. HbA at rest.

Higher P_{50} = lower O_2 affinity = right shift


Answer: A

Q3: Which of the following is true regarding gas exchange in alveoli?

- A. Exercise increases the total area of capillaries
- B. O_2 is perfusion limited, CO_2 is diffusion limited
- C. Exchange continues until the end of the capillary

Q4: What does the letter Z in this graph represent?

- A. Hemoglobin F
- B. Hemoglobin A
- C. Hemoglobin S
- D. Hemoglobin A during exercise

Answer: A

Q5: Which of the following about CO₂ is correct?

- A. When it binds to hemoglobin it is called carboxyhemoglobin.
- B. Most of the CO₂ present in the dissolved form.
- C. CO₂ binding to hemoglobin increases the affinity for oxygen.
- D. Oxygenation of hemoglobin promotes dissociation of H⁺ and shifts equilibrium toward CO₂ formation.

Q6: Which of the following is correct about gas diffusion?

- A. Blood gives up 25% of O_2 in the tissue in normal people
- B. In normal people O_2 saturation of hemoglobin is 100% and P_aO_2 is 100 mmHg

Q7: In the lung, when O_2 diffuses from the alveoli to the capillaries, most of it?

- A. Remains in solution as O_2
- B. Converted to oxyhemoglobin
- C. Converted to bicarbonate ions in RBC
- D. Combines with plasma proteins
- E. Combines with H_2O in plasma to form carbonic acid

Answer: B

Q8: In normal individual, regarding gas exchange across pulmonary capillaries during mild exercise, which of the following statements is TRUE? ?

- A. CO_2 crosses the membrane easier than O_2 .
- B. Diffusing capacity of the lung for O_2 is more than for CO_2 ; the most important factor is the molecular weight of both gases.
- C. The length of capillary required for gas equilibrium is shorter during exercise.
- D. ABGs become grossly abnormal.
- E. Equilibrium across the respiratory membrane is never achieved.

Answer: A

Q9: Which of the following is true regarding a patient with Anemia?

- A. Mixed venous pO_2 is reduced.
- B. Arterial pO_2 is reduced.
- C. Arterial - venous $[O_2]$ difference decrease

Answer: A

Q10: What limits the maximum VO_2 ?

- A. Lung capacity
- B. Mitochondrial enzymes
- C. Cardiovascular system
- D. Mitochondria number

Answer: C

Q11: A 20-year-old male college student participates in a pulmonary study in his physiology lab. He is healthy and in good physical shape. He is asked to run on a treadmill for 20 minutes at a moderate pace, during which time his arterial PCO_2 is measured. What is his predicted arterial PCO_2 (in mm Hg) ??

- A. 20
- B. 40
- C. 60
- D. 80

Answer: B

Q12: For a normal Hb-O₂ dissociation curve, what is the most correct relationship?

- A. PaO₂ 40 mmHg, SaO₂ 40%
- B. PaO₂ 26 mmHg, SaO₂ 26%
- C. PaO₂ 60 mmHg, SaO₂ 90%
- D. PaO₂ 120 mmHg, SaO₂ 120%
- E. PaO₂ 70 mmHg, SaO₂ 40%

Answer: C

Q13: If blood Hb is 10 g/dL, PaO_2 is 100 mm Hg, and hemoglobin is 50% saturated with oxygen, the volume of oxygen contained in 100 ml of blood is approximately?

- A. 5.6 ml
- B. 6.7 ml
- C. 9.5 ml
- D. 19.5 ml
- E. Cannot be calculated from the above data

Answer: B

Q14: For a normal Hb-O₂ dissociation curve, what is the most correct relationship?

- A. PaO₂ 40 mmHg, SaO₂ 40%
- B. PaO₂ 26 mmHg, SaO₂ 26%
- C. PaO₂ 60 mmHg, SaO₂ 90%
- D. PaO₂ 120 mmHg, SaO₂ 120%
- E. PaO₂ 70 mmHg, SaO₂ 40%

Answer: C

Q15: In normal person at rest, which of the following decreases arterial PO_2 ?

- A. Polycythemia
- B. CO poisoning
- C. Breathing 50% oxygen
- D. Anemia
- E. Ascent to an altitude of 3500 m

Answer: E

Q16: If 1 g of hemoglobin has an oxygen capacity of 1.34 mL of oxygen, what is the oxygen content of blood containing 10 g of hemoglobin when the blood $\text{PO}_2=40 \text{ mmHg}$?

- A. $\approx 6 \text{ mL/dL}$
- B. $\approx 8 \text{ mL/dL}$
- C. $\approx 10 \text{ mL/dL}$
- D. $\approx 12 \text{ mL/dL}$
- E. Cannot be calculated from the information provided

Q17: Which of the following decreases oxygen content but does not alter P_aO_2 or percentage saturation of hemoglobin?

- A. Ascent to an altitude of 3500 m
- B. Polycythemia (high RBC count)
- C. Breathing 50% oxygen
- D. Anemia
- E. Development of a large right-to-left shunt

Q18: Decreased arterial PO₂ is a consequence of all the following EXCEPT?

- A. Breathing at high altitude
- B. IRDS
- C. Pulmonary edema
- D. COPD
- E. CO poisoning

Q19: If Hb concentration is 7.5 g/dl, and the arterial blood O₂ sat is 98%, what would be the concentration of arterial O₂?

- A. Arterial [O₂] cannot be calculated.
- B. The dissolved O₂ becomes more than the Hb-bound O₂.
- C. There is about 15 mL of oxygen per 100 mL of arterial blood.
- D. Arterial [O₂] equals 10 mL/dL.
- E. When [Hb] equals 7.5 g/dL, automatically O₂ saturation never exceeds 50%.

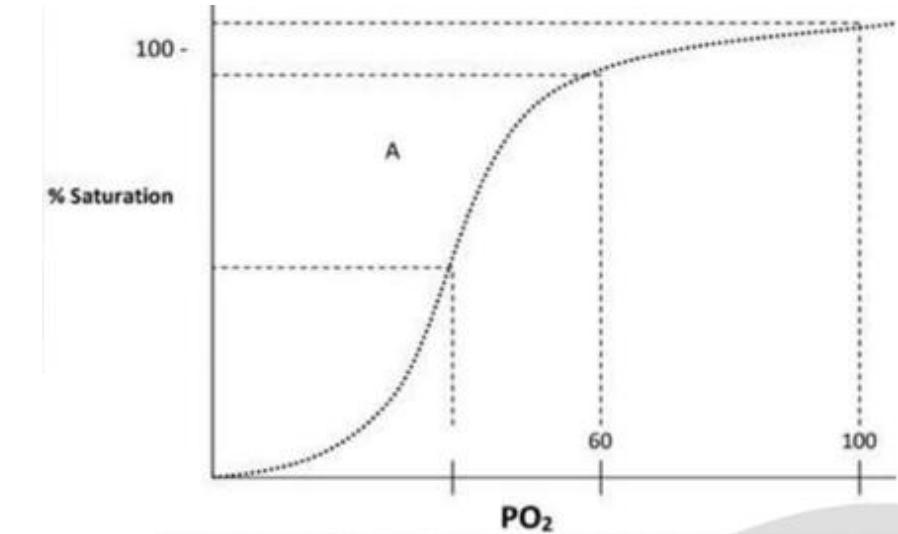
Q20: A patient with anemia has which of the following?

- A. A normal arterial blood O_2 content
- B. Arterial PO_2 of 99 mmHg
- C. A decreased venous blood PO_2
- D. Hyperventilation
- E. Cyanosis

It was answered C, and C is a stronger option.
However, I believe B is 100% correct too.

Answer: C

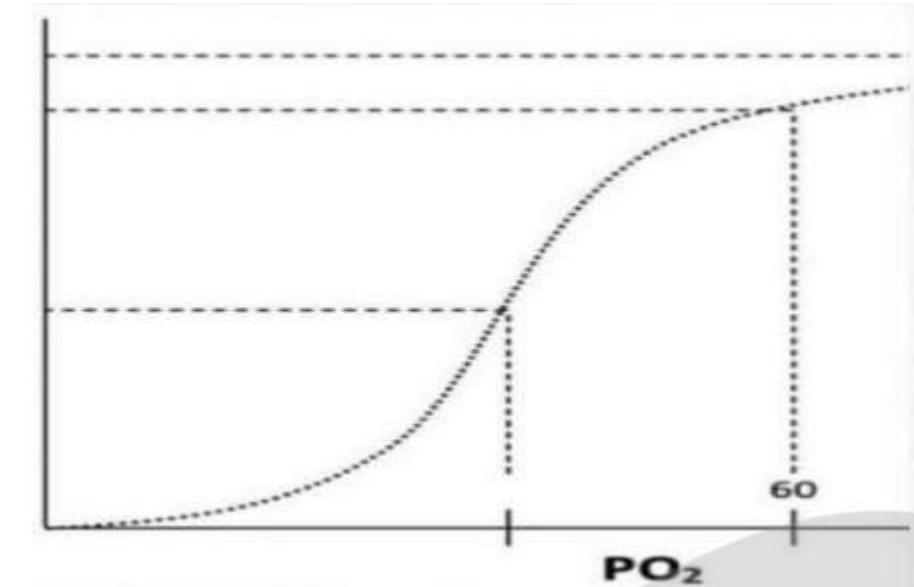
Q21: Which of the following would shift HB-O₂ to the left?


- A. Exercise
- B. HbF
- C. Increase alveolar PCO₂
- D. Whenever P50 increases
- E. Hypoventilation

Answer: B

Q22: Which of the following is INCORRECT regarding the above oxyhemoglobin curve?

- A. Higher P50 than normal means that O₂ binds less tightly to hemoglobin.
- B. HbF is normally shifted to the left.
- C. An increase in PCO₂ causes a right shift.
- D. An increase in blood pH increases P50.
- E. An increase in temperature shifts the O₂ uptake curve to the right.


Answer: D

Q23: Regarding carbon monoxide poisoning, which of the following is TRUE?

- A. Increases firing rate from the peripheral chemoreceptors to the respiratory center
- B. Decreases arterial O_2 concentration
- C. Decreases arterial PO_2
- D. Can be a self-limited disease
- E. As long as arterial PCO_2 is below 1 mmHg, we should not worry

Q24: The below is normal oxyhemoglobin dissociation curve; an increase in P50 is seen in which of the following conditions?

- A. Reverse Bohr's effect
- B. Decreased local temperature
- C. Physical exercise
- D. Increase plasma pH
- E. Fetal hemoglobin

Answer: C

Q25: Which of the following conditions would result in the highest oxygen content per millimeter blood?

- A. Hemoglobin concentration = 5, $\text{PaO}_2 = 90 \text{ mmHg}$
- B. Hemoglobin concentration = 5, $\text{PaO}_2 = 500 \text{ mmHg}$
- C. Hemoglobin concentration = 3, $\text{PaO}_2 = 90 \text{ mmHg}$
- D. Hemoglobin concentration = 10, $\text{PaO}_2 = 60 \text{ mmHg}$
- E. Hemoglobin concentration = 16, $\text{PaO}_2 = 28 \text{ mmHg}$

Answer: D

Q26: Which of the following statements about the transport of O₂ & CO₂ by the blood is true?

- A. Most CO₂ is transported in the dissolved form
- B. The % saturation of hemoglobin with O₂ will increase if the arterial PCO₂ is increased
- C. A decrease in the % saturation of hemoglobin with O₂ increases CO₂ transport
- D. In anemia, both arterial PO₂ and O₂ content are decreased
- E. The reduced arterial PO₂ in an individual living at high altitude is due to impairment in O₂ diffusion

Q27: The oxygen dissociation curve of normal adult hemoglobin is most effectively shifted to the right by which of the following?

- A. Mixing with fetal hemoglobin
- B. Increased 2,3-bisphosphoglycerate (BPG)
- C. Cooperative binding of oxygen
- D. Increased pH
- E. Decreased CO₂

Answer: B

Q28: Which of the following shifts the oxyhemoglobin curve to the left?

- A. Increased temperature
- B. Exercise
- C. Hyperventilation
- D. Metabolic acidosis

Answer: C

Q29: All the following is true regarding peripheral chemoreceptors except:

- A. Response to low O₂
- B. Is triggered by CO₂.
- C. Sensitive to H⁺ content

CO₂ content changes H⁺ concentration (pH) which is detected or triggered by peripheral receptors

Answer: B

Q29: All the following is true regarding peripheral chemoreceptors except:

- A. Response to low O₂
- B. Is triggered by CO₂.
- C. Sensitive to H⁺ content

CO₂ content changes H⁺ concentration (pH) which is detected or triggered by peripheral receptors

Answer: B

Q30:Which one of the following has a direct effect on the central chemoreceptors of the brain?

- A. CO_2
- B. O_2
- C. HCO_3^-
- D. Hydrogen ions

Answer: D

Q31: Which one of the following is a compensatory mechanism in high altitude :

- A. Left shift of the oxygen hemoglobin saturation curve
- B. Decrease BPG-2
- C. pulmonary resistance
- D. Normal PO₂

Answer: C

Q32:Which of the following is true regarding respiratory centers:

- A. The nervous signal that is transmitted to the inspiratory muscles by DRG is mainly an instantaneous burst of action potentials
- B. Inspiratory center receives sensory input from peripheral chemoreceptors via the glossopharyngeal and vagus and phrenic nerves
- C. The neurons of the ventral respiratory group are mostly active during normal quiet respiration
- D. Stimulation of the apneustic center prolongs the contraction of the diaphragm

Q33: Which of the following statements is correct regarding Peripheral chemoreceptors:

- A. Respond only to increased/decreased H⁺ concentration
- B. Respond only to low O₂
- C. Stimulated by CO
- D. Have the lowest arterio-venous O₂ difference in our body
- E. Aortic bodies are innervated by the glossopharyngeal nerve

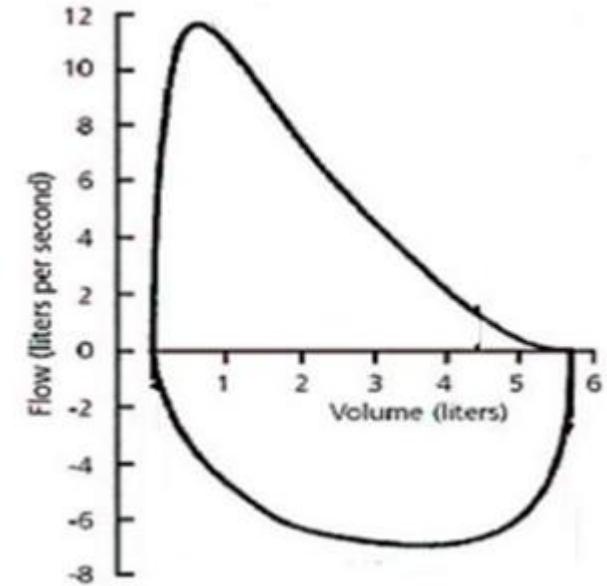
Q34: Regarding carbon monoxide poisoning, one of the following is TRUE:

- A. Increases firing rate from the peripheral chemoreceptors to the respiratory center
- B. Decreases arterial O₂ concentration
- C. Decreases arterial PO₂
- D. Can be self-limited disease
- E. As long as PCO arterial is below 1 mmHg, we should not worry.

Answer: B

Q35: In an individual the ventilation didn't increase when the inspired pCO₂ was increased, but decreased during increased inspired pO₂. Which of the following is most likely the cause for this response in ventilation:

- A. Dysfunctional central chemoreceptors
- B. Hypersensitivity of the peripheral chemoreceptors
- C. Bronchial muscle spasm
- D. Diaphragmatic fatigue
- E. Normal functioning of the central and peripheral chemoreceptors


Q36: In diving, divers first hyperventilate before they go into water. This hyperventilation allows one to hold one's breath for a longer period of time, because hyperventilation:

- A. Increases the oxygen reserve of systemic arterial blood
- B. Decreases the PCO₂ of systemic arterial blood
- C. Decreases the pH of systemic arterial blood
- D. Increases brain blood flow
- E. Make alveolar air full of O₂ which divers can use while diving

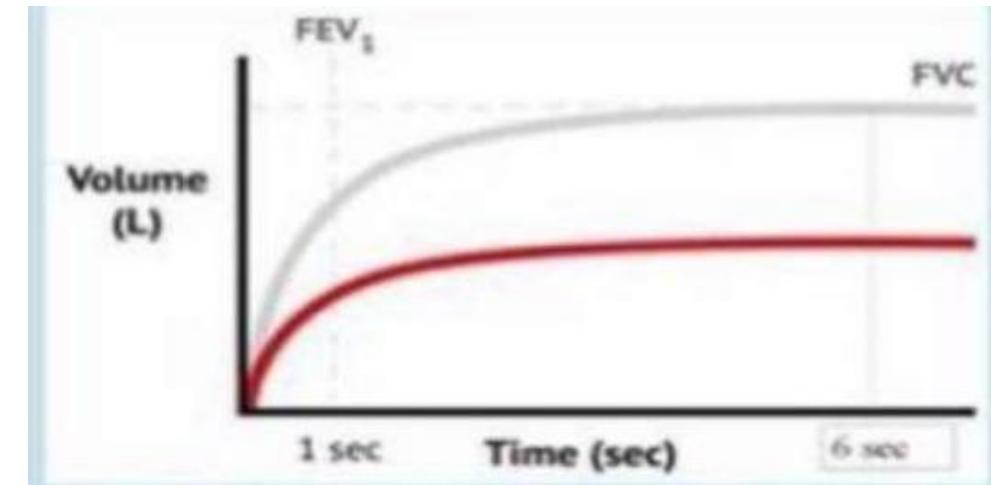
The Lab

Q1: Which of the following can be known from this graph?

- A. Duration of expiration
- B. The reproducibility of the test
- C. FVC
- D. TLC

Answer: C

Q2: You have a 15-year-old thin and tall male patient who presents with a three month history of dyspnea and wheezes. You perform spirometry, what is the most probable diagnosis based on the spirometry report ?


- A. Interstitial lung disease
- B. Pulmonary hypertension
- C. A restrictive pattern due to obesity
- D. Normal lung mechanics
- E. Asthma

	Predicted	Actual (Measured)
FVC (L)	4.04	3.5
FEV ₁ (L)	3.55	2.36
FEV ₁ /FVC	88%	67%

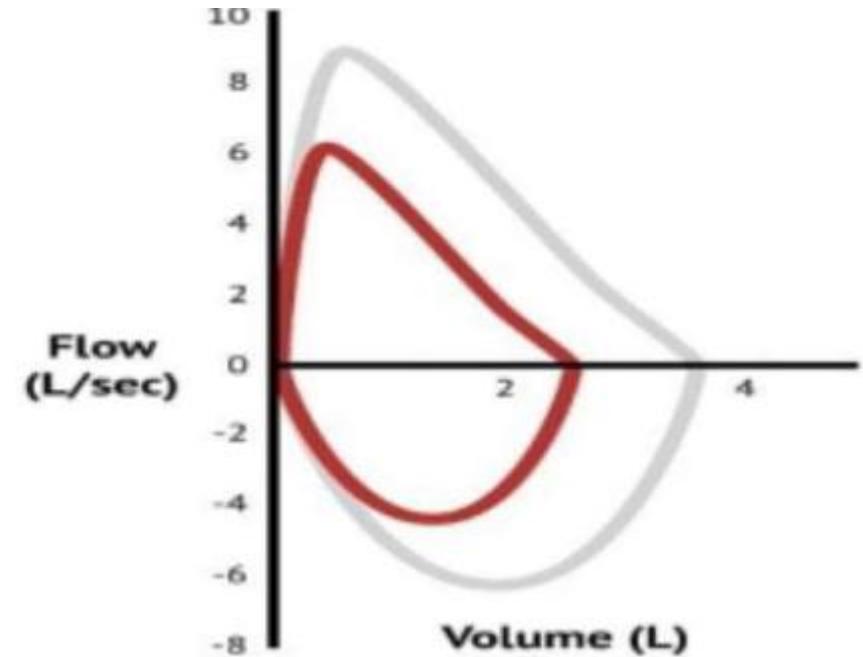
Answer: E

Q3: What pattern is suggested by the following volume-time graph (red curve)?

- A. Chronic obstructive pulmonary disease (COPD)
- B. The patient stopped exhaling too early
- C. Asthma
- D. Restrictive disease
- E. The patient re-inhaled some air during the test

Answer: D

Q4: You did a spirometry test to a patient. The test was reproducible and acceptable and it is done 3 times. A table of results show that $FEV_1/FVC=90\%$, FVC of predicted= 72%. What to do next?

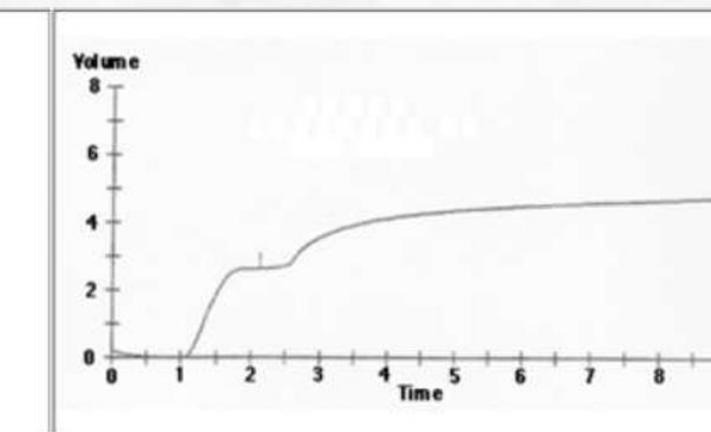
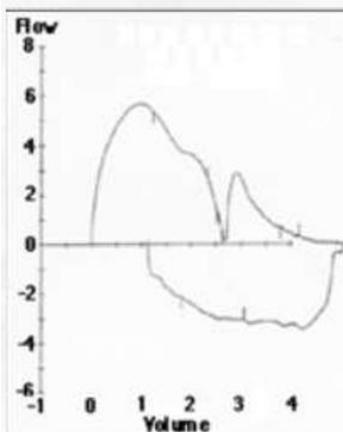

- A. Repeat the test again
- B. It is normal
- C. Give bronchodilator and repeat
- D. Do methacholine challenge test
- E. Complete pulmonary function test is needed

Answer: E

Q5: What does this flow volume loop represent?

- A. COPD
- B. Asthma
- C. Restrictive lung disease

Answer: C



Q6: A normal person with $VC = 3.5L$, $IC = 2L$ $V_t = 0.5L$, $FRC = 2.5L$, what's his ERV ?

- A. 1 L
- B. 1.5 L
- C. 2.5 L

Answer: B

Q7: A 53-year-old female has a history of chest tightness the FEV_1/FVC is 50%, FEV_1 is 74% of predicted value and FVC is 100% of predicted value, based on the results and the shown graphs, what is your diagnosis? ?

- A. Uninterpretable, does not meet acceptability criteria
- B. Severe obstruction
- C. Normal
- D. Mild obstruction

Answer: A

Q8: While performing the test the patient should inhale a very deep breath then exhale as forcefully and for as long as he/she can.

- A. True
- B. False

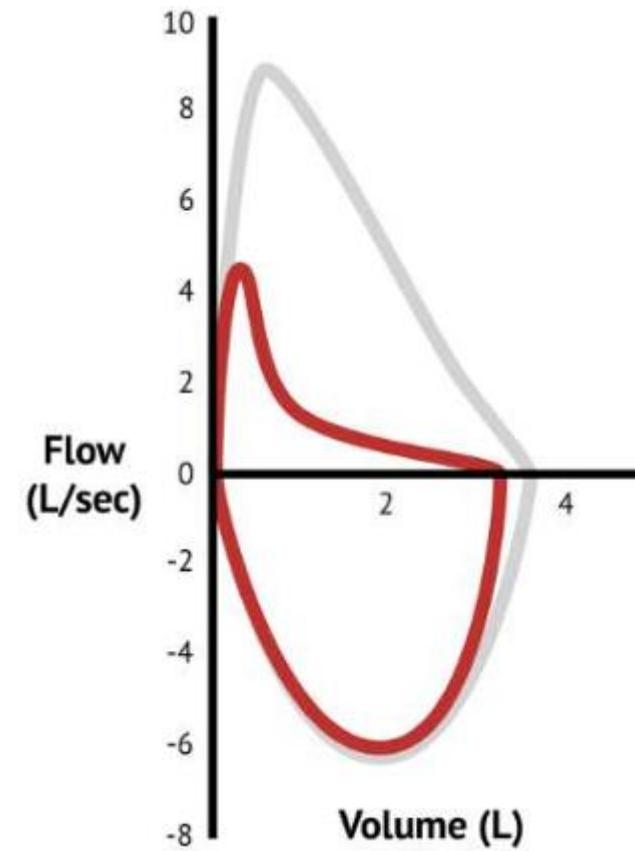
Answer: A

Q9: If the FVC was 5 liters and the FEV_1/FVC ratio was 60%, what is the value of FEV_1 ?

- A. 2.5 L
- B. 3 L
- C. Can't be determined by the given data

Answer: C

Q10: An acceptable spirometry test has the following features?


- A. The difference between the two largest FVC measurements is within 200 mL
- B. Rapid increase in airflow at the start of exhalation
- C. The FVC is within normal limits
- D. Exhalation continued for ~6 seconds

Q11: If the spirometry report shows an FEV_1/FVC ratio of 90% you can conclude the test result is normal without looking at other parts of the test?

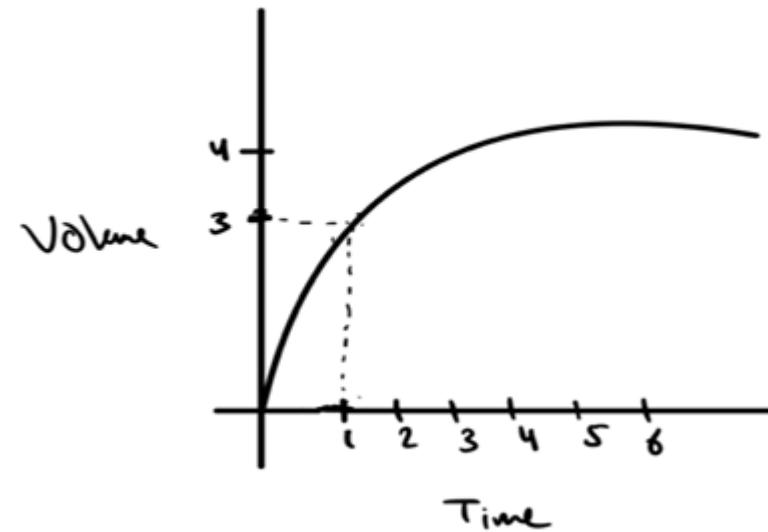
- A. True
- B. False

Q12: The following flow volume curve is highly suggestive of?

- A. This is normal
- B. Obstructive lung disease
- C. Restrictive lung disease

Answer: B

Q13: What test result can be used to distinguish between asthma and chronic obstructive pulmonary disease (COPD)?


- A. Reversibility test
- B. Methcholine challenge test
- C. FEV_1/FVC
- D. FEF25–75

Answer: A

Q14: What is true regarding the next graph?

- A. Shows an obstructive lung disease.
- B. FEV₁/FVC ratio is normal.

Answer: B

Q15: Spirometry can be used to measure one of the following?

- A. RV (Residual volume)
- B. FRC (Functional residual capacity)
- C. TLC (Total lung capacity)
- D. VC (Vital capacity)
- E. Physiologic dead space volume

Answer: D

**Q16: Which of the following concerning average lung volumes and capacities of a person at rest is TRUE ?
(TLC = total lung capacity; VC = vital capacity; FRC = functional residual capacity; V_t = Tidal volume)**

- A. $TLC > VC > V_t > FRC$
- B. $TLC > FRC > VC > V_t$
- C. $TLC > VC > FRC > V_t$
- D. $TLC > FRC > V_t > VC$
- E. $VC = TLC > FRC > V_t$

Answer: C

Q17: The inspiratory reserve volume measures what?

- A. Amount of air remaining in the lung after a maximal exhalation
- B. Amount of air that the lung holds
- C. Amount of air that can be further exhaled after a normal breath
- D. Amount of air that can be further inhaled after a normal breath

Q18: The total lung capacity is calculated using which of the following formulas?

- A. Residual volume + tidal volume + inspiratory reserve volume
- B. Residual volume + expiratory reserve volume + inspiratory reserve volume
- C. Expiratory reserve volume + tidal volume + inspiratory reserve volume
- D. Residual volume + expiratory reserve volume + tidal volume + inspiratory reserve volume

Q19: Which of the following is not correct about FRC?

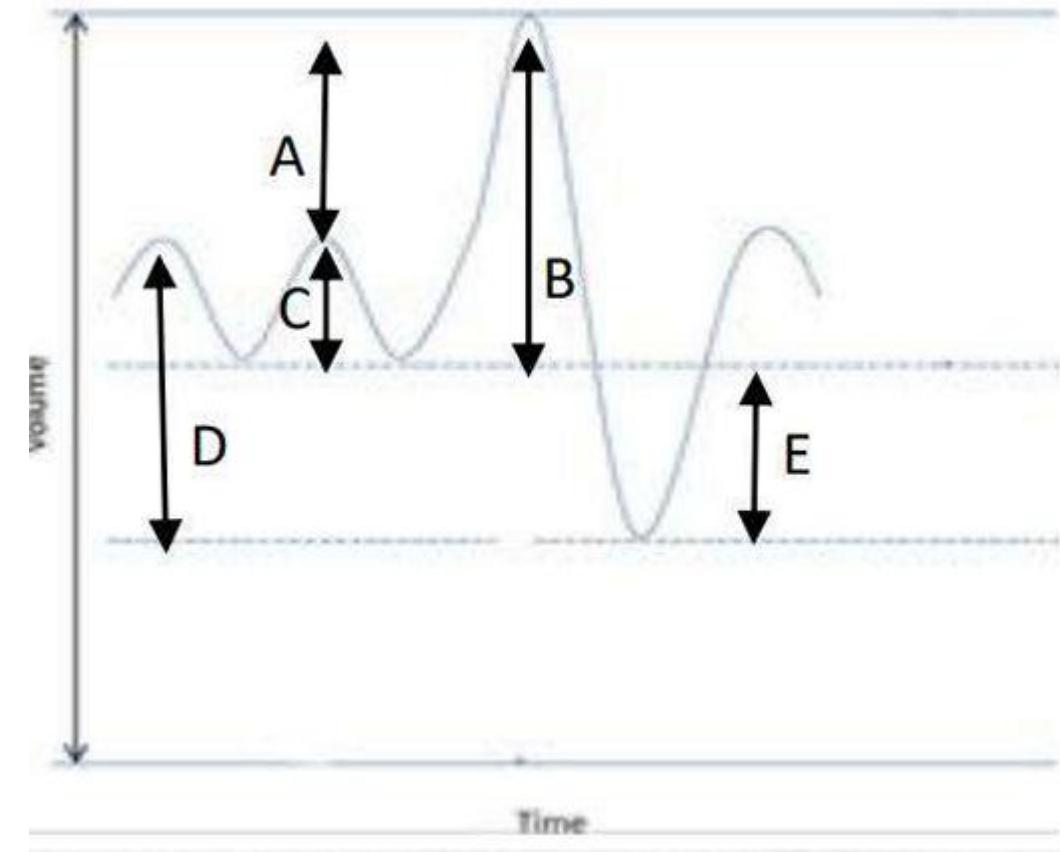
- A. It is about 75% TLC.
- B. The elastic recoil of the chest wall is outward.
- C. The elastic recoil of the lung is inward.
- D. The lung-thorax system is at rest.
- E. Pulmonary vascular resistance is the lowest.

Q20: Maximum volume in the lung after forced inspiration is called?

- A. RV
- B. TLC
- C. FRC
- D. IRV
- E. ERV

Answer: B

Q21: Which of the following isn't normal finding with aging?


- A. Increase in RV
- B. Increase in FRC
- C. Increase in ERV
- D. Increase in closing volume

Answer: C

Q22: In the following figure which point represent the Inspired reserve volume and which represent the expired reserve volume?

- A. IRV–A // ERV–E
- B. IRV–B // ERV–D
- C. IRV–A // ERV–D
- D. IRV–E // ERV–A
- E. IRV–E // ERV–D

Answer: A

Q23: Which of the following isn't normal finding with aging?

- A. Increase in RV
- B. Increase in FRC
- C. Increase in ERV
- D. Increase in closing volume

Answer: C

These questions had no options (answers next slide)

Q1: FEV1 < 80%, FVC < 80%, TLC is decreased, which of the following is expected to be normal?

Q2: Which of the following decreases in obstructive but not in restrictive disease?

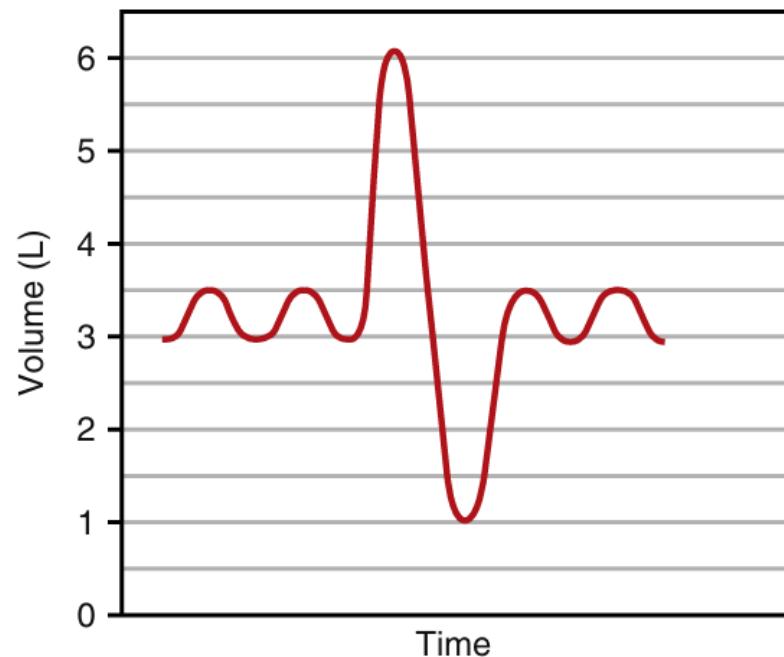
Q3: What decreases in emphysema?

Q4: What is incorrect about residual volume?

These questions had no options (The answers)

A1: FEV1/FVC

A2: FEV1/FVC


A3: FEV1

A4: It represents the resting state of the pulmonary-thorax system.

The Book Questions

Q1: A 22-year-old woman inhales as much air as possible and exhales as much air as she can, producing the spirogram shown in the figure. A residual volume of 1.0 liter was determined using the helium dilution technique. What is her FRC (in liters)? (Q8 in the book)

- A. 2.0
- B. 2.5
- C. 3.0
- D. 3.5
- E. 4.0
- F. 5.0

Answer: C

Q2: The various lung volumes and capacities include the total lung capacity (TLC), vital capacity (VC), inspiratory capacity (IC), tidal volume (Vt), expiratory capacity (EC), expiratory reserve volume (ERV), inspiratory reserve volume (IRV), functional residual capacity (FRC), and residual volume (RV). Which of the following lung volumes and capacities can be measured using direct spirometry without additional methods? (Q14 in the book)

	TLC	VC	IC	VT	EC	ERV	IRV	FRC	RV
A)	No	No	Yes	No	Yes	No	Yes	No	No
B)	No	Yes	Yes	Yes	Yes	Yes	Yes	No	No
C)	No	Yes	No						
D)	Yes	No	Yes						
E)	Yes								

Answer: B

Q3: A person with normal lungs has an oxygen (O₂) consumption of 750 ml O₂/min. The hemoglobin (Hb) concentration is 15 g/dl. The mixed venous saturation is 25%. What is the cardiac output? (Q19 in the book)

- A. 2500 ml/min
- B. 5000 ml/min
- C. 7500 ml/min
- D. 10,000 ml/min
- E. 20,000 ml/min

Answer: B

Q4: Blood gas measurements are obtained in a resting patient who is breathing room air. The patient has an arterial content of 19 ml O₂/min with a Po₂ of 95. The mixed venous O₂ content is 4 ml O₂/100 ml blood. Which condition does the patient have? (Q27 in the book)

- A. An increase in physiological dead space
- B. Pulmonary edema
- C. A low Hb concentration
- D. A low cardiac output

Answer: D

Q5: A normal male subject has the following initial conditions (in the steady state):

Arterial PO_2 = 92 mm Hg

Arterial O_2 saturation = 97%

Venous O_2 saturation = 20%

Venous PO_2 = 30 mm Hg

Cardiac output = 5600 ml/min

O_2 consumption = 256 ml/min

Hb concentration = 12 gm/dl

- A. 2.2 ml O_2 /100 ml blood
- B. 3.2 ml O_2 /100 ml blood
- C. 4 ml O_2 /100 ml blood
- D. 4.6 ml O_2 /100 ml blood
- E. 6.2 ml O_2 /100 ml blood
- F. 10.8 ml O_2 /100 ml blood
- G. 16 ml O_2 /100 ml blood

If you ignore the contribution of dissolved O_2 to the O_2 content, what is the venous O_2 content? (Q28 in the book)

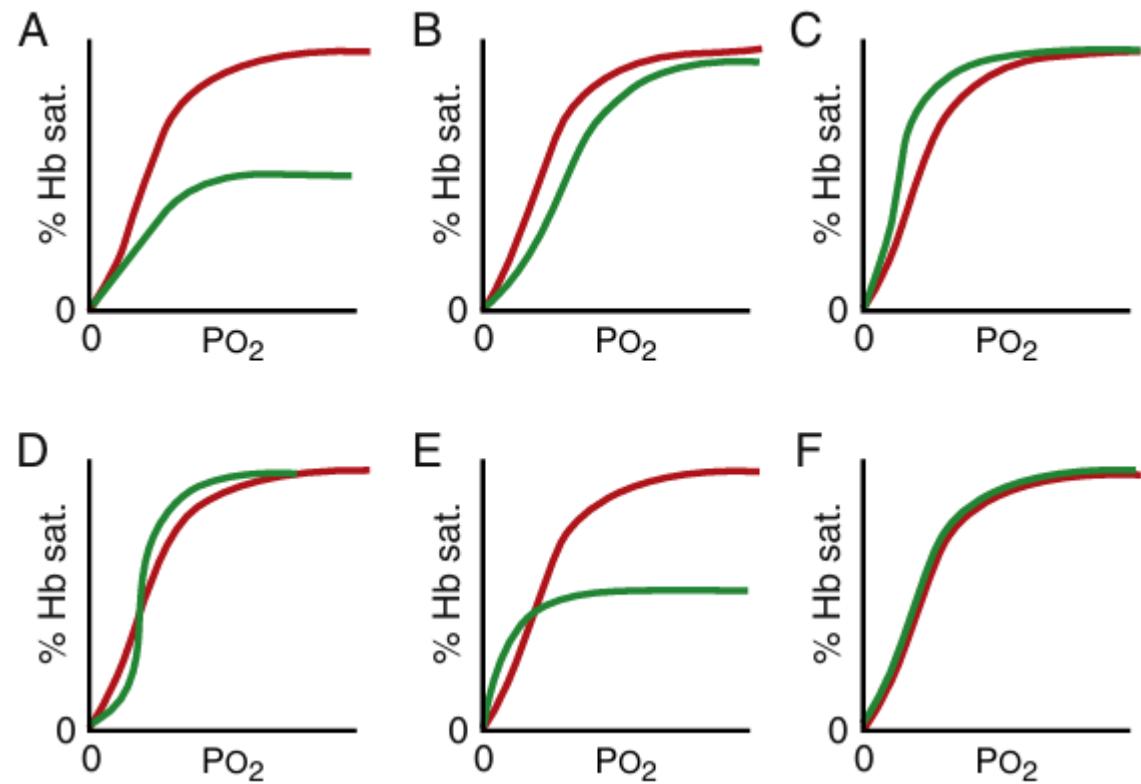
Answer: B

Q6: A man fell asleep in his running car. He was unconscious when he was brought into the emergency department. With carbon monoxide (CO) poisoning, you would expect his alveolar O_2 partial pressure (P_aO_2) would be _____, while his arterial O_2 content (C_aO_2) would be _____. (Q29 in the book)

- A. Normal, decreased
- B. Decreased, decreased
- C. Increased, normal
- D. Increased, normal

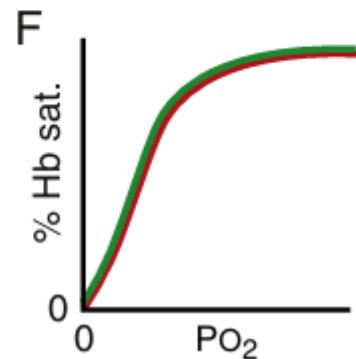
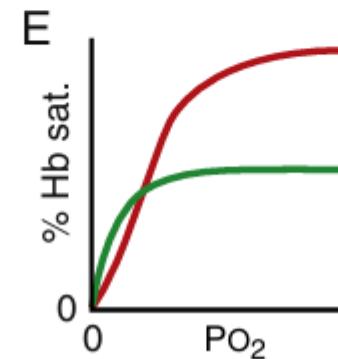
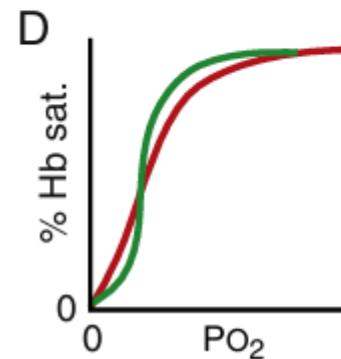
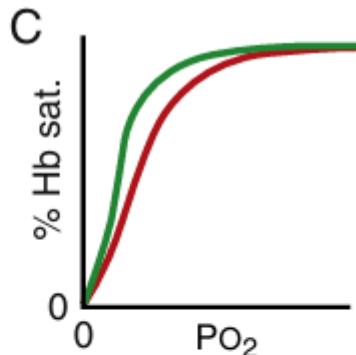
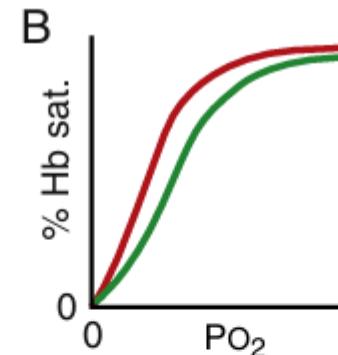
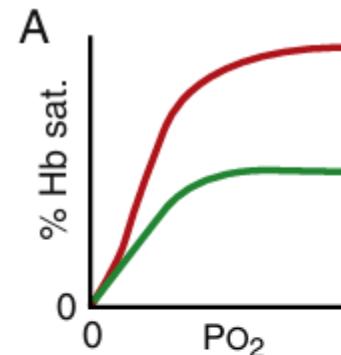
Answer: A

Q7: A person with anemia has an Hb concentration of 12 g/dl. He starts exercising and uses 12 ml O₂/dl. What is the mixed venous Po₂? (Q49 in the book)


- A. 0 mm Hg
- B. 10 mm Hg
- C. 20 mm Hg
- D. 40 mm Hg
- E. 100 mm Hg

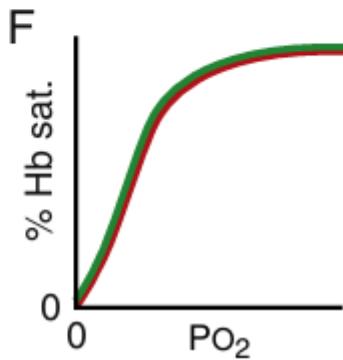
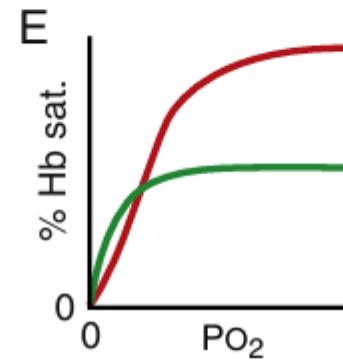
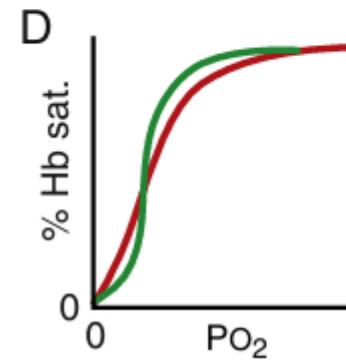
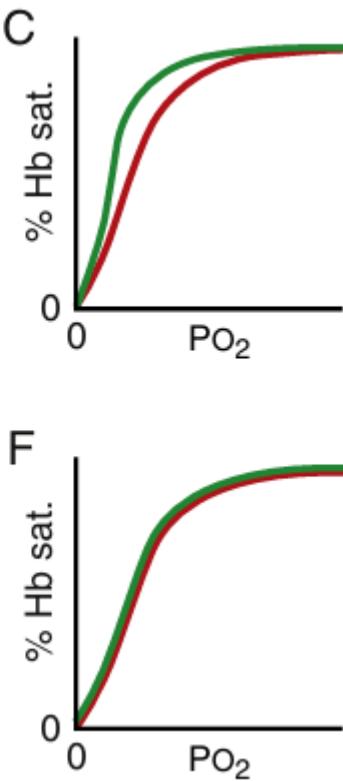
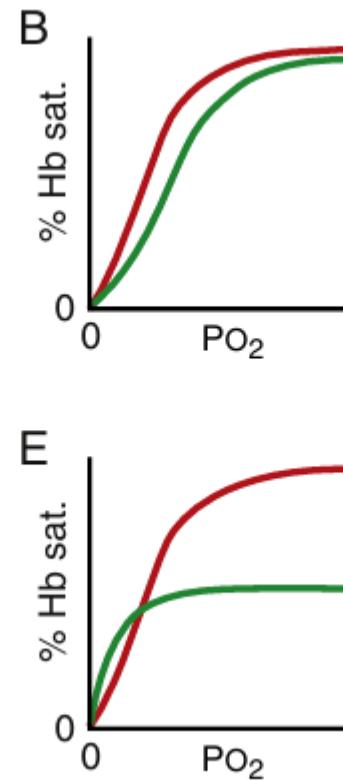
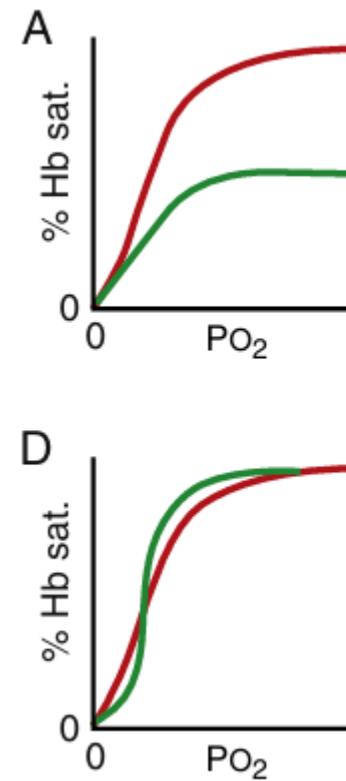
Answer: C

Q8: Which of the above O₂-Hb dissociation curves corresponds to normal blood (red line) and blood containing CO (green line)? (Q52 in the book)







- A. A
- B. B
- C. C
- D. D
- E. E
- F. F

Answer: E

Q9: Which of the above O₂-Hb dissociation curves corresponds to blood during resting conditions (red line) and blood during exercise (green line)? (Q53 in the book)

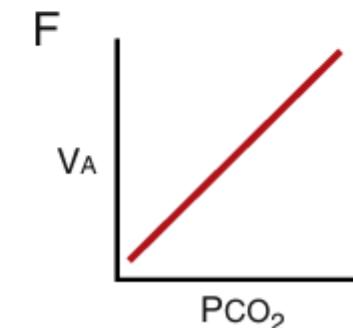
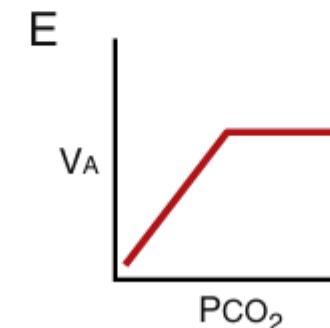
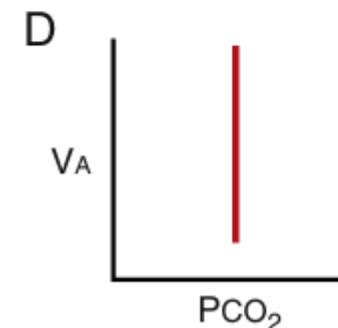
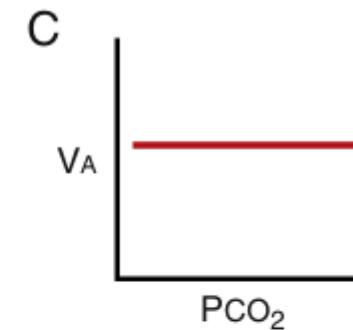
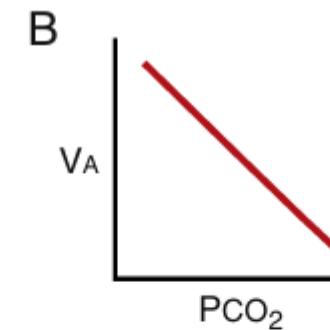
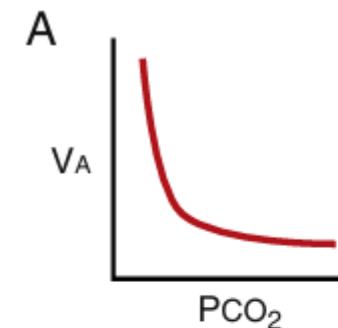






- A. A
- B. B
- C. C
- D. D
- E. E
- F. F

Answer: B

Q10: Which of the above O₂-Hb dissociation curves corresponds to blood from an adult (red line) and blood from a fetus (green line)? (Q54 in the book)

- A. A
- B. B
- C. C
- D. D
- E. E
- F. F

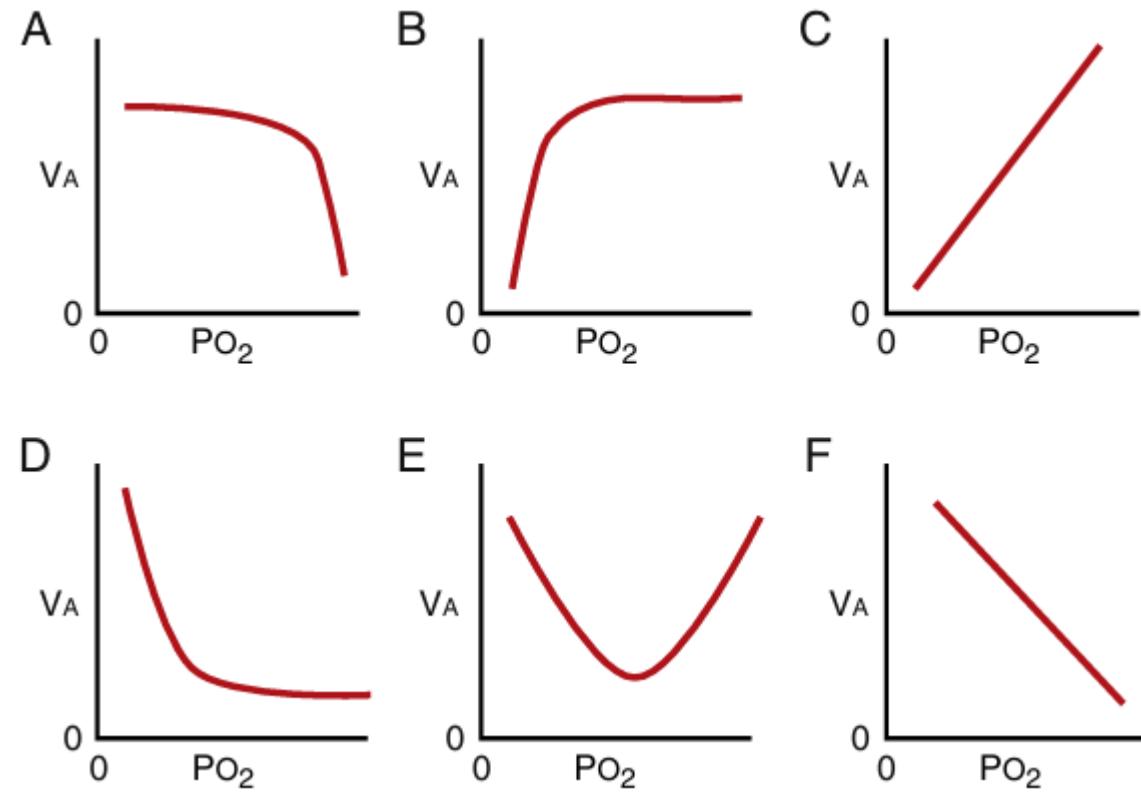
Answer: C







Q11: A 26-year-old medical student on a normal diet has a respiratory exchange ratio of 0.8. How much O₂ and CO₂ are transported between the lungs and tissues of this student (in ml gas/100 ml blood)? (Q59 in the book)

	O ₂	CO ₂
A)	4	4
B)	5	3
C)	5	4
D)	5	5
E)	6	3
F)	6	4

Answer: C

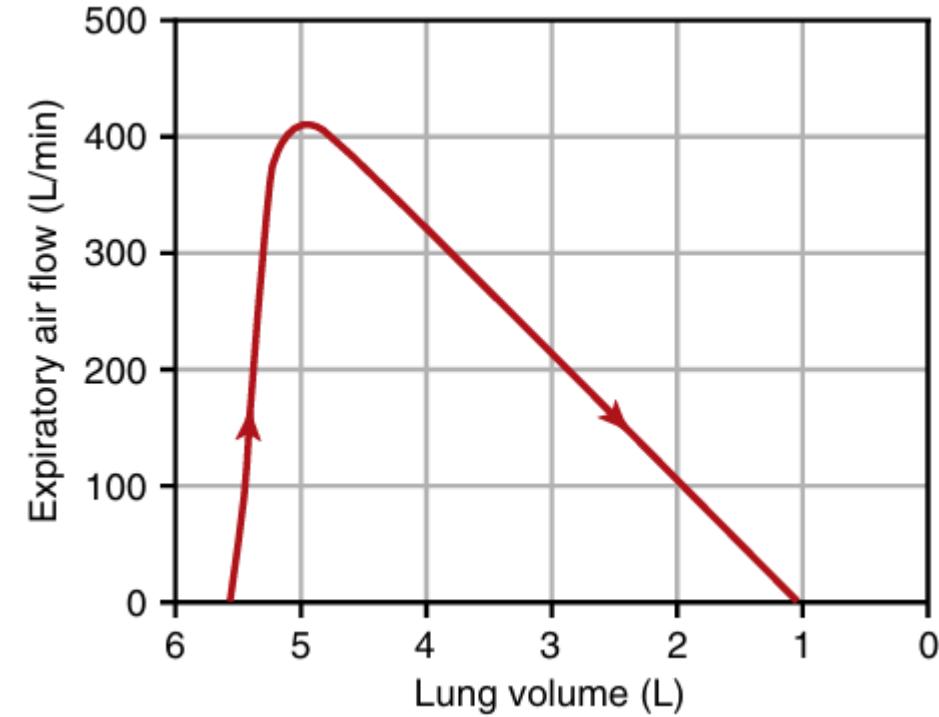
Q12: Which diagram in the above figure best describes the relationship between V_A and arterial CO_2 tension (PCO_2) when the PCO_2 is changed acutely over a range of 35 to 75 mm Hg? (Q64 in the book)


- A. A
- B. B
- C. C
- D. D
- E. E
- F. F

Answer: F

Q13: Which diagram in the above figure best describes the relationship between V_A and arterial O_2 tension (PO_2) when the PO_2 is changed acutely over a range of 0 to 160 mm Hg and the arterial PCO_2 and H^+ concentration remain normal? (Q65 in the book)

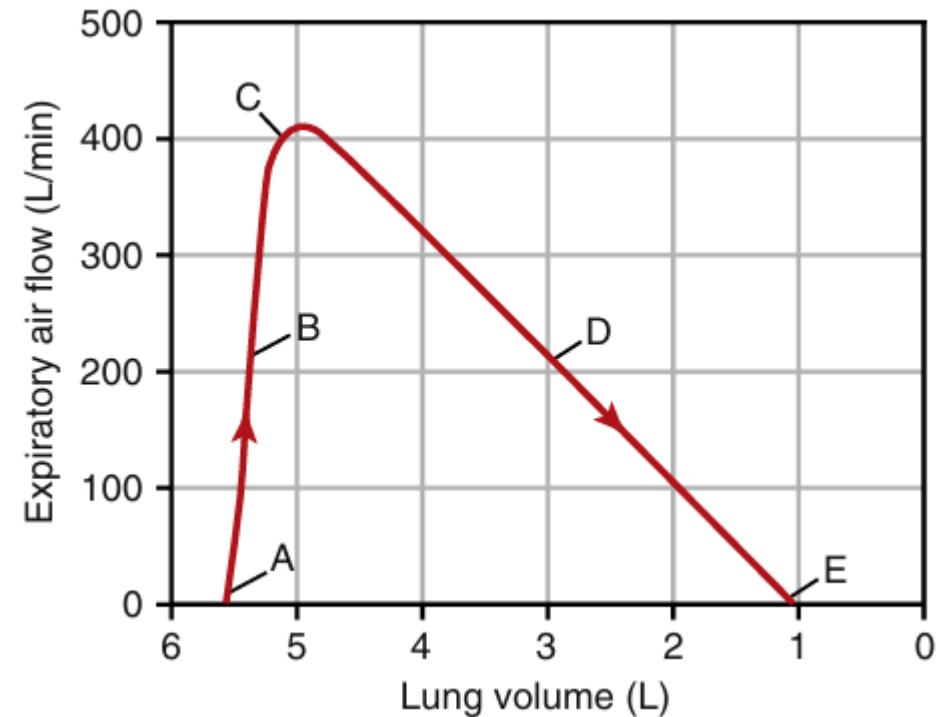
- A. A
- B. B
- C. C
- D. D
- E. E
- F. F


Answer: D

Q14: At a fraternity party a 17-year-old male places a paper bag over his mouth and breathes in and out of the bag. As he continues to breathe into this bag, his rate of breathing continues to increase. Which of the following is responsible for the increased ventilation? (Q66 in the book)

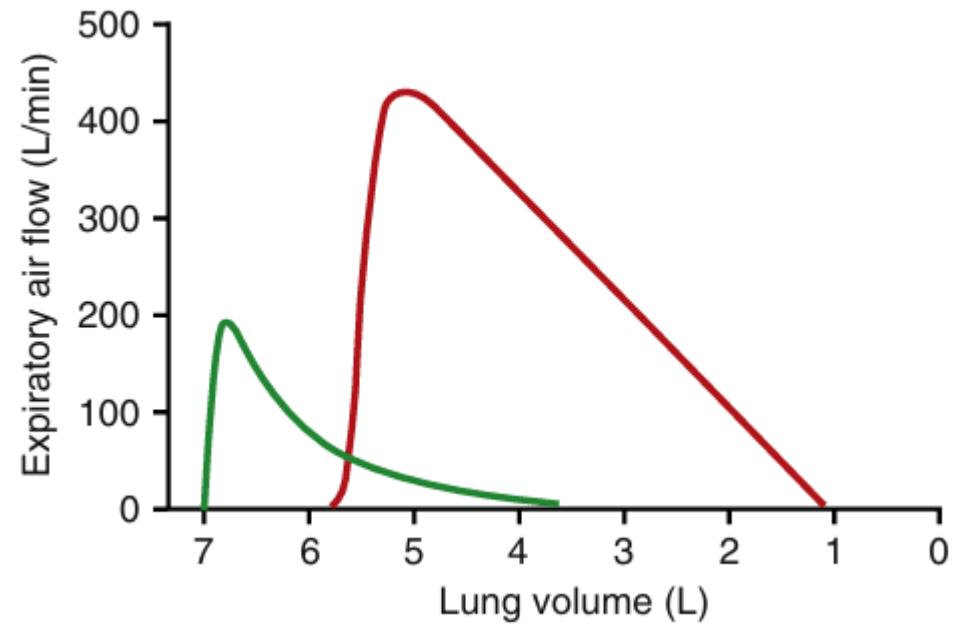
- A. Increased alveolar P_o_2
- B. Increased alveolar P_{CO_2}
- C. Decreased arterial P_{CO_2}
- D. Increased pH

Q15: A 45-year-old man inhaled as much air as possible and then expired with a maximum effort until no more air could be expired. This action produced the maximum expiratory flow-volume (MEFV) curve shown in the above figure. What is the forced vital capacity (FVC) of this man (in liters)? (Q71 in the book)


- A. 1.5
- B. 2.5
- C. 3.5
- D. 4.5
- E. 5.5
- F. 6.5

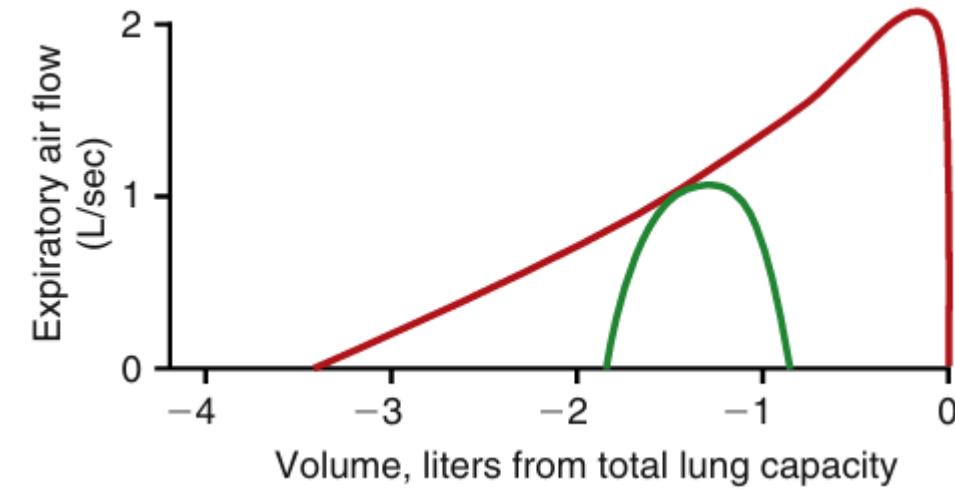
Answer: D

Q16: The MEFV curve shown in the above figure is used as a diagnostic tool for identifying obstructive and restrictive lung diseases. At which point on the curve does airway collapse limit maximum expiratory air flow? (Q72 in the book)


- A. A
- B. B
- C. C
- D. D
- E. E

Answer: D

Q17: The MEFV curves shown in the above figure were obtained from a healthy person (red curve) and a 57-year-old man with shortness of breath (green curve). The man with shortness of breath likely has which disorder? (Q73 in the book)


- A. Asbestosis
- B. Emphysema
- C. Kyphosis
- D. Scoliosis
- E. Silicosis
- F. Tuberculosis

Answer: B

Q18: The MEFV curve shown in the above figure (red line) was obtained from a 75-year-old man who smoked 40 cigarettes per day for 60 years. The green flow-volume curve was obtained from the man during resting conditions. Which set of changes is most likely to apply to this man? (Q75 in the book)

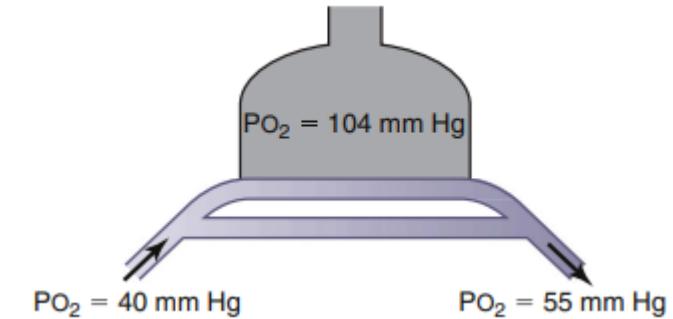
	Exercise Tolerance	TLC	RV
A)	Decreased	Decreased	Decreased
B)	Decreased	Increased	Increased
C)	Decreased	Normal	Normal
D)	Increased	Increased	Increased
E)	Normal	Decreased	Decreased

Answer: B

Q19: A man fell asleep in his running car. He was unconscious when he was brought into the emergency department. With carbon monoxide (CO) poisoning, you would expect his alveolar O₂ partial pressure (PaO₂) would be _____, while his arterial O₂ content (CaO₂) would be _____. (Q29 in the book)

- A. Normal, decreased
- B. Decreased, decreased
- C. Increased, normal
- D. Increased, normal

Answer: A


Q19: A person with normal lungs at sea level (760 mm Hg) is breathing 50% O₂. What is the approximate alveolar PO₂ (Q32 in the book)

- A) 100
- B) 159
- C) 306
- D) 330
- E) 380

Answer: C

Q20: The figure below shows a lung with a large shunt in which mixed venous blood bypasses the O₂ exchange areas of the lung. Breathing room air produces the O₂ partial pressures shown on the diagram. What is the O₂ tension of the arterial blood (in mm Hg) when the person breathes 100% O₂ and the inspired O₂ tension is greater than 600 mm Hg? (Q43 in the book)

- A) 40
- B) 55
- C) 60
- D) 175
- E) 200
- F) 400
- G) 600

Answer: C

Q21: When the respiratory drive for increased pulmonary ventilation becomes greater than normal, a special set of respiratory neurons that are inactive during normal quiet breathing then becomes active, contributing to the respiratory drive. These neurons are located in which structure? (Q58 in the book)

- A) Apneustic center
- B) Dorsal respiratory group
- C) Nucleus of the tractus solitarius
- D) Pneumotaxic center
- E) Ventral respiratory group

Answer: E

Q22:What is the most important pathway for the respiratory response to systemic arterial CO₂ (PCO₂)? (Q56 in the book)

- A) CO₂ activation of the carotid bodies
- B) Hydrogen ion (H⁺) activation of the carotid bodies
- C) CO₂ activation of the chemosensitive area of the medulla
- D) H⁺ activation of the chemosensitive area of the medulla
- E) CO₂ activation of receptors in the lungs

Answer: D

Q23: The basic rhythm of respiration is generated by neurons located in the medulla. What limits the duration of inspiration and increases respiratory rate? (Q57 in the book)

- A) Apneustic center
- B) Dorsal respiratory group
- C) Nucleus of the tractus solitarius
- D) Pneumotaxic center
- E) Ventral respiratory group

Answer: D

Q24: An anesthetized man is breathing with no assistance. He then undergoes artificial ventilation for 10 minutes at his normal VT but at twice his normal frequency. He undergoes ventilation with a gas mixture of 60% O₂ and 40% nitrogen. The artificial ventilation is stopped, and he fails to breathe for several minutes. This apneic episode is due to which of the following? (Q62 in the book)

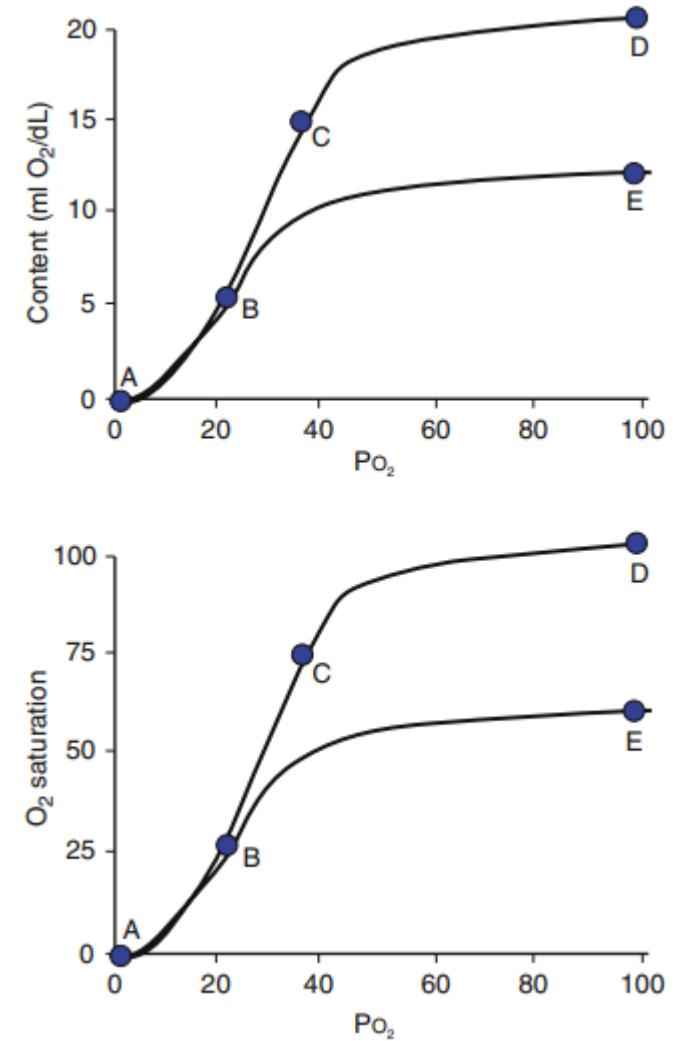
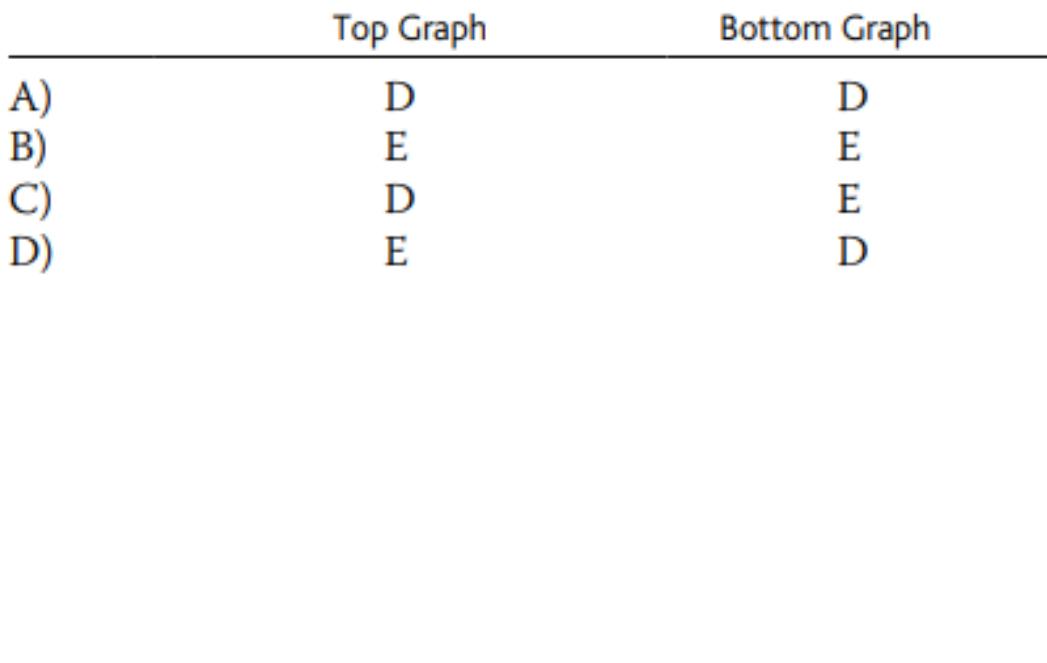
- A) High arterial PO₂ suppressing the activity of the peripheral chemoreceptors
- B) Decrease in arterial pH suppressing the activity of the peripheral chemoreceptors
- C) Low arterial PCO₂ suppressing the activity of the medullary chemoreceptors
- D) High arterial PCO₂ suppressing the activity of the medullary chemoreceptors
- E) Low arterial PCO₂ suppressing the activity of the peripheral chemoreceptors

Q25: At a fraternity party a 17-year-old male places a paper bag over his mouth and breathes in and out of the bag. As he continues to breathe into this bag, his rate of breathing continues to increase. Which of the following is responsible for the increased ventilation? (Q66 in the book)

- A) Increased alveolar PO₂
- B) Increased alveolar PCO₂
- C) Decreased arterial PCO₂
- D) Increased pH

Answer: B

Q26: V_a increases severalfold during strenuous exercise. Which factor is most likely to stimulate ventilation during strenuous exercise? (Q67 in the book)



- A) Collateral impulses from higher brain centers
- B) Decreased mean arterial pH
- C) Decreased mean arterial PO_2
- D) Decreased mean venous PO_2
- E) Increased mean arterial PCO_2

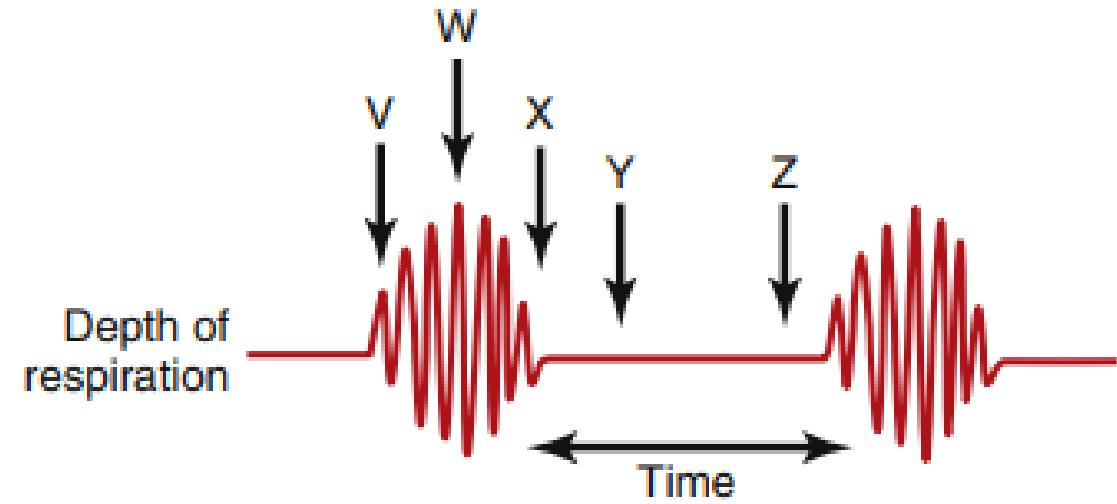
Q27: A stroke that destroys the respiratory area of the medulla would be expected to lead to which of the following? (51Q in the book)

- A) Immediate cessation of breathing
- B) Apneustic breathing
- C) Ataxic breathing
- D) Rapid breathing (hyperpnea)
- E) None of the above (breathing would remain normal)

Answer: A

Q28: Which points on the adjacent figure represent arterial blood in a severely anemic person? (Q50 in the book)

Answer: D


Q29: A 45-year-old man at sea level has an inspired O₂ tension of 149 mm Hg, nitrogen tension of 563 mm Hg, and water vapor pressure of 47 mm Hg. A small tumor pushes against a pulmonary blood vessel, completely blocking the blood flow to a small group of alveoli. What are the O₂ and carbon dioxide (CO₂) tensions of the alveoli that are not perfused (in mm Hg)? (Q 36 in the book)

	CO ₂	O ₂
A)	0	0
B)	0	149
C)	40	104
D)	47	149
E)	45	149

Answer: B

Q30: Cheyne-Stokes breathing is an abnormal breathing pattern characterized by a gradual increase in the depth of breathing, followed by a progressive decrease in the depth of breathing that occurs again and again approximately every minute. Which time points on the below figure (V-Z) are associated with the highest PCO₂ of lung blood and highest PCO₂ of the neurons in the respiratory center (Q70 in the book)

	Lung Blood	Respiratory Center
A)	V	V
B)	V	W
C)	W	W
D)	X	Z
E)	Y	Z

Answer: B

Scan the QR code or click it for FEEDBACK

Corrections from previous versions:

Versions	Slide #	Before Correction	After Correction
v0 → v1	5 86 87	A Missing A	A (total area; more accurate) C C
v1 → v2			