

Antibiotics for Treatment of Pneumonia

I. MICROORGANISMS THAT CAN CAUSE PNEUMONIA

A. Gram-Positive Bacteria

- *Streptococcus pneumoniae*
- *Staphylococcus aureus*

B. Gram-Negative Bacteria

- *Haemophilus influenzae*
- *Pseudomonas aeruginosa*
- **Enterbacteriaceae Family:**
 - *Escherichia coli*
 - *Klebsiella pneumoniae*
 - *Enterobacter* species
 - *Proteus* species
 - *Serratia* species
 - *Acinetobacter* species

C. Atypical Bacteria

- *Mycoplasma pneumoniae*
- *Chlamydia pneumoniae*
- *Legionella pneumophila*

Causative Agents of Pneumonia:

Community-acquired pneumonia (CAP):

- *Streptococcus pneumoniae* + Atypical Bacteria
- *Haemophilus influenzae* (mainly in smokers and COPD).

Hospital-acquired and ventilator-associated pneumonia (HAP/VAP) or Severe CAP / ICU / Immunocompromised patients:

- Gram-negative bacteria
- *Staphylococcus aureus*
- *Pseudomonas aeruginosa*

Aspiration pneumonia:

- Anaerobic bacteria

Resistant / multidrug-resistant pneumonia:

- MRSA, VRSA
- Resistant Gram-negative bacteria

II. ANTIBIOTIC CLASSES AND THEIR ACTIVITY

1. β -lactam Antibiotics:

(*Penicillins, Cephalosporins, Carbapenems, Monobactams*)

- General Properties: Bactericidal; Inhibit bacterial cell wall synthesis; No activity against atypical bacteria.

A. Penicillins (Amoxicillin, Ampicillin):

- c. Coverage: Gram-positive bacteria and some Gram-negative bacteria.

B. Penicillins + β -lactamase inhibitor (Amoxicillin-clavulanate, Ampicillin-sulbactam):

- Coverage: Gram-positive, Gram-negative, and anaerobic bacteria.

Aspiration pneumonia: Caused by **anaerobic bacteria aspirated from the oral cavity or gastric contents into the lungs**. These organisms commonly produce β -lactamases, making simple penicillins ineffective unless combined with β -lactamase coverage.

C. Antipseudomonal penicillin (Piperacillin-tazobactam): -Potent Penicillins-

- Coverage: Gram-positive, Gram-negative, Pseudomonas aeruginosa, and anaerobic bacteria.

(Often combined with **aminoglycosides or fluoroquinolones** in severe infections for a broader coverage)

D. Anti-staphylococcal penicillins (Oxacillin, Nafcillin):

- Coverage: Highly effective against **Methicillin-sensitive *Staphylococcus aureus* (MSSA)**.

(Clinical Point: Drugs of choice in case MSSA is confirmed to be the infecting agent; preferred over broader agents because they are highly effective, narrow-spectrum, and less likely to promote resistance)

E. Cephalosporins

- **Second generation (Cefuroxime):** Covers **Gram-positive and Gram-negative bacteria**.

(effective against **CAP caused by β -lactamase-producing *H. influenzae* and *Klebsiella*** because it is **resistant to β -lactamase degradation**, unlike ampicillin)

- **Third generation (Ceftazidime):** Covers **Gram-negative bacteria and Pseudomonas aeruginosa**.
- **Fourth generation -Potent- (Cefepime):** Covers **Gram-positive, Gram-negative, *Pseudomonas aeruginosa*, and penicillin-resistant *Streptococcus pneumoniae***.

F. Carbapenems (Imipenem, Meropenem)

- Coverage: Gram-positive, Gram-negative, Pseudomonas aeruginosa, anaerobes, and multidrug-resistant organisms.
- Clinical Points:
 - last-line reserve drugs for **severe infections or febrile neutropenia**
 - **Meropenem has less Gram-positive activity than imipenem.**

G. Monobactams (Aztreonam)

- **Coverage:** Gram-negative bacteria only, used **only as add-on therapy** to widen Gram-Negative coverage.

2. Antibiotics for Atypical Pneumonia Bacteria:

A. Macrolides (Azithromycin, Clarithromycin, Erythromycin)

- **Mechanism:** Inhibit protein synthesis
- **Coverage:** Atypical bacteria and Gram-positive bacteria.
- **Clinical Uses:**
 - Mainly used to **cover Atypical strains that cause CAP** as an **add-on drug**,
 - Drug of choice for **Corynebacterial infections** (Diphtheria, sepsis, erythrasma) and **Legionnaires' disease**.

B. Fluoroquinolones (Levofloxacin, Ciprofloxacin, Moxifloxacin)

- **Mechanism:** Inhibit DNA synthesis (By inhibiting bacterial topoisomerase (DNA gyrase))
- **Coverage:** Gram-positive, Gram-negative, atypical bacteria, and intracellular organisms.
- **Use:** Has a **very wide spectrum**, thus could be used as a **CAP Monotherapy**, covering both **Strep. Pneumoniae** and **Atypical Bacteria**.
- **Distinctions:**
 - **Levofloxacin:** Superior activity against *S. pneumoniae*.
 - **Ciprofloxacin:** Most active against *Pseudomonas aeruginosa*.
 - **Moxifloxacin:** Most active against anaerobic bacteria.

C. Tetracyclines (Doxycycline, Minocycline, Tigecycline)

- **Mechanism:** Inhibit protein synthesis.
- **Coverage:** Very potent against atypical bacteria, effective also against **Gram-positives**, **Gram-negatives** and **Anaerobs**.
- **Clinical Relevance:** Alternatives to macrolides and fluoroquinolones in case they fail to treat **Atypical pneumonia**.

3. Aminoglycosides (Gentamicin, Amikacin, Tobramycin):

- **Mechanism:** Bactericidal; inhibit protein synthesis.
- **Coverage:** Gram-negative bacteria only (including *Pseudomonas*).
- **Note:** Just like **Monobactams**, used **only as add-on therapy** to widen Gram-Negative coverage.

4. Antibiotics for Multidrug-Resistant Strains:

A. Resistant Gram-Positive Drugs:

- **Vancomycin:**
 - Mechanism: **Inhibits Cell Wall synthesis**
 - Coverage: **Resistant Gram-positives only**
 - Uses: **Penicillin-Resistant strains of Staph and Strep, Methicillin-Resistant strains (Ex: MRSA), or in patients allergic to penicillin.**
- **Linezolid:**
 - Mechanism: **Inhibit protein synthesis**, primarily **bacteriostatic**, but **bactericidal against streptococci**.
 - Coverage: **Resistant Gram-positives** (Including **Vancomycin-Resistant Staph. Aureus and Enterococcus**)

B. Resistant Gram-Negative Drugs:

• **Polymyxin B, Polymyxin E (Colistin):**

- Mechanism: Act as **cationic detergents; disrupt cell membranes**.
- Coverage: **Multidrug-Resistant Gram-negative bacteria**.

CLINICAL SCENARIOS, LIKELY BACTERIA, AND TREATMENT

Clinical Scenario	Likely Bacteria	Clinical Logic (Explanation)	Antibiotic Family/Class	Specific Examples
Community-Acquired (CAP)	<i>S. pneumoniae</i> , Atypical bacteria	Treatment must cover both <i>S. pneumoniae</i> and Atypical bacteria	Beta-Lactam + Macrolide (or Respiratory Quinolone)	Ampicillin + Azithromycin (or Levofloxacin)
Aspiration Pneumonia	Anaerobic bacteria	Occurs when stomach/mouth contents enter the lungs; requires drugs that work in low-oxygen environments.	Beta-Lactam+ Beta-Lactamase Inhibitor	Ampicillin–Sulbactam or Amoxicillin–Clavulanate
Hospital-Acquired (HAP / VAP) Or Severe Immunocompromised patient	Gram-negative, <i>P. aeruginosa</i> , <i>S. aureus</i>	Hospital bugs are often resistant. We need drugs specifically designed to kill <i>Pseudomonas</i> .	Strong, Antipseudomona-I Beta-Lactam (± Aminoglycoside)	Piperacillin–Tazobactam or Cefepime
MRSA Pneumonia	MRSA	Standard antibiotics cannot bind to MRSA. We need drugs that target its specific resistant wall.	----	Vancomycin or Linezolid

Adverse Effects of Pneumonia Antibiotics

Penicillins:

- Hypersensitivity reactions (Penicillin Allergy) → rash, urticaria, anaphylaxis
- Sodium overload with antipseudomonal penicillins → heart failure, hypokalemia
- Ampicillin rash in infectious mononucleosis patients (100%)
- Superinfection: pseudomembranous colitis and vaginal candidiasis

Cephalosporins:

- Bleeding disorders (hypoprothrombinemia, platelet dysfunction)
- Cross-reactivity with penicillin allergy (5–10%)

Carbapenems (Imipenem, Meropenem):

- Seizures (especially imipenem)

Monobactam (Aztreonam):

- Minimal allergy cross-reactivity with penicillins
- Elevation of serum aminotransferases

Aminoglycosides (Gentamicin, Amikacin, Tobramycin):

Mnemonic (NO GAP):

- Nephrotoxicity
- Ototoxicity
- Gestational contraindication
- Apnea (Neuromuscular junction block at high doses → respiratory paralysis, Calcium gluconate and neostigmine are antidotes)
- Pain at injection site

Fluoroquinolones:

- **Tendonitis and tendon rupture**
- **Cartilage damage → contraindicated in children <18 & pregnancy**
- **QT prolongation → arrhythmias**
- **Hyperglycemia** (especially gatifloxacin)
- **CNS effects** (dizziness, insomnia)
- **Photosensitivity**

Macrolides (Erythromycin mainly):

- **Cholestatic hepatitis -> Jaundice**
- **Increased gastrointestinal motility due to stimulation of motilin receptors -> Diarrhea**
- **CYP450 inhibition**

Tetracyclines (Doxycycline, Minocycline, Tigecycline):

- **Photosensitivity**
- **Teeth discoloration & bone growth inhibition (For fetal bone and teeth) -> contraindicated in pregnancy and children <8 years**

Vancomycin:

- **Red man (or Red Neck) syndrome** (infusion-related flushing), can be reduced by prolonging infusion or increasing the dosing interval.
- **Nephrotoxicity**
- **Ototoxicity**

Linezolid:

- **Thrombocytopenia**
- **MAO inhibition**

Polymyxins (Colistin, Polymyxin B):

- Severe nephrotoxicity
- Neurotoxicity
- **Electrolyte disturbances (Hypocalcemia, Hypomagnesemia, Hypokalemia ..)**
- **Rhabdomyolysis**
- **Clostridium difficile associated diarrhea**

General adverse effects of pneumonia antibiotics:

- Most of these pneumonia antibiotics share common adverse effects, including **gastrointestinal upset** (nausea, vomiting, diarrhea), **headache and dizziness**, **hypersensitivity reactions**, **nephrotoxicity**, and in some cases **bone marrow suppression**.

لا تنسونا والمسمين من صالح دعائكم