

Respiratory System Physiology

Comprehensive File 3 – V1

Dr. Yanal Shafagoj

Done By:

Mohammad Mahasneh

Almothana Khalil

As introduced in lecture 1, lung diseases are divided into 3 parts:

- 70% are of obstructive pattern – COPD: chronic bronchitis, emphysema, with or without asthma.
- 20% are of restrictive pattern – problems in the expansion of alveoli seen in pulmonary fibrosis, pulmonary edema, infant respiratory distress syndrome (IRDS), and acute respiratory distress syndrome (ARDS); the last two show a huge tendency for the alveoli to collapse.
- 10% are of vascular causes.

الوعائية، التي تؤثر على تدفق الدم إلى الرئتين

من الحالات تتعلق بـ الأنسداد الرئوي:
هذه الحالات تؤثر على تدفق الدم في الرئتين، مثل التهاب الحويصلات الهوائية (الاكياس الهوائية في الرئتين)، مثل التهاب الرئوي الوفير (الرئوية، متلازمة نقص التنسج عند التنفس الحادة (ARDS)، في هذه الحالات، يكون هناك ميل كبير لانهيار الحويصلات الهوائية

Other non-lung related causes of hypoxia include the following:

- Anemia and hemoglobinopathies.
- Heart failure.
- Paralysis of the respiratory muscles, as in poliomyelitis affecting the phrenic nerves. Drug overdoses can depress the respiratory center in medulla oblongata.

1. مقاومة المجرى الهوائية:
تم شرح أن قوة القيادة (Driving Force) المطلوبة للتنفس هي $1 + \text{مل رئوي}$. هذا يعني أن فرق الضغط بين الصدر الجوي وضغط الحويصلات الهوائية (P_a) كافٍ لتنفس الشخص.
المعارلة التي توضح تدفق الهواء هي:

As discussed previously, a driving force of $+1 \text{ mmHg}$ is enough for respiration to happen;

remember that $\text{Flow} = \frac{P_{atm} - P_{alveolar}}{R_{airways}}$. [$DF = P_{alveolar} - P_{atm}$ for expiration.]

This flow (RMV) can also be calculated using the following equation:

يُحسب تدفق الهواء
باستخدام معادلة التنسج
:(RMV) الدقيق لكل دقيقة

Respiratory minute ventilation (RMV) = Tidal volume (V_T) \times Respiration Rate (RR)

$$\text{Respiratory minute ventilation (RMV)} = 0.5 \text{ L} \times 12 \frac{\text{breathes}}{\text{min}} = 6 \frac{\text{L}}{\text{min}}$$

Remember that $\text{Cardiac output (Q)} = \text{Stroke volume} * \text{Heart rate} \approx 5 \frac{\text{L}}{\text{min}}$.

3. الناتج القلبي (Cardiac Output):
تم توضيح أن الناتج القلبي (Q) هو حاصل ضرب الحجم المفخوذ (Stroke volume) في معدل ضربات القلب (Heart rate)، وهو يعادل 5 لتر في الدقيقة

Notice how the two flow values are close; to achieve a flow (Q) of 5 L/min , the heart provides a driving force of 100 mmHg mean arterial pressure against the total peripheral vascular resistance. Recall that the arterioles contribute the most for the resistance, and this is evident since they require the largest pressure gradient to maintain the flow.

4. مقاومة تدفق الدم وتدفق الهواء:
على الرغم من أن تدفق الدم وتدفق الهواء متتشابهان في قيمتهما (5 لتر في الدقيقة)، إلا أن المقاومة في الأوعية الدموية والاصطباب تختلف:
• يتطلب تدفق الدم إلى الأطراف قوة دفع (Driving force) بليل 100 ملم زئبقي ضد المقاومة المفرغة.
• أما في الرئتين، فإن المقاومة تتعلق بالمسافة المقطوعة عبر المجرى الهوائية، حيث أن المجرى الهوائية تتطلب $+1 \text{ ملم زئبقي فقط لتحقيق تدفق هواء طبيعى}$

Back to the lungs, beware that $R \propto \frac{1}{A^2}$ [Recall that $R \propto \frac{1}{r^4}$ and that $A \propto r^2$].

5. المعادلة المتعلقة بالمجاري الهوائية:
الناتج القلبي R تناسب مع مقلوب الربع المساحة: A
 $R_{airways} \propto \frac{1}{A^2}$
تناسب مع نصف قطر r للأنسجة: A
 r^2
هذا يعني أن مقاومة المجرى الهوائية تزداد بـ تقليل مساحة المجرى الهوائية

The air flow required only $+1 \text{ mmHg}$ of driving force to achieve a normal RMV; this means that airway resistance is equal to 1% of the total peripheral vascular resistance, given that both flows are close enough ($5 \approx 6$).

6. خلاصة:
تحتاج المجرى الهوائية إلى فرق ضغط بسيط ($+1 \text{ ملم زئبقي}$) لتحقيق تدفق هواء طبيعي (RMV)، مما يعني أن مقاومة المجرى الهوائية تشكل 1% فقط من إجمالي المقاومة الوعائية المفرغة.

الشرح يوضح كيف أن مقاومة المجرى الهوائية تساهم بشكل طفيف في المقاومة الكلية مقارنة بـ مقاومة الأوعية الدموية الطرفية، وأن تدفق الهواء في الرئتين يتطلب قوة دفع أقل بكثير لتحقيق نفس تدفق الدم في الجسم

How is the Resistance Measured?

Resistance can be directly measured with the following equation: $R = \frac{8\eta l}{\pi r^4}$.

However, for this equation to be used, three conditions must be met.

- The fluid must be homogenous, while blood contains different components.
- The flow must be steady, not pulsatile.
- The flow must be laminar, not turbulent.

These conditions cannot be met in physiological hemo/aerodynamics.

It is also difficult for 'l' and 'r' to be measured, as we have 23 divisions through the lung.

The resistance can be **indirectly** measured by this equation:

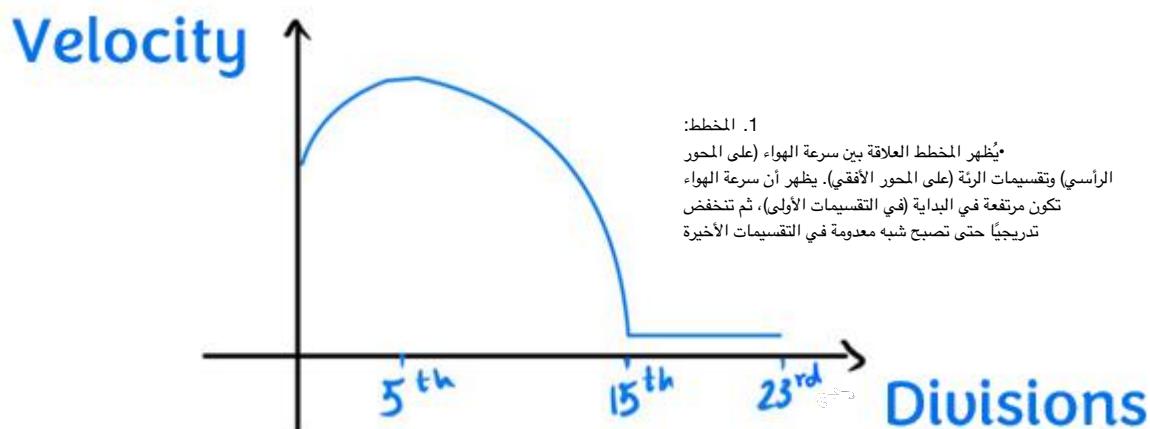
$$R = \frac{DF}{Flow} = \frac{1 \text{ mmHg}}{6 \frac{L}{\text{min}}} \rightarrow \text{too small}$$

The airway resistance is physiologically small, yet it is important to know where exactly

in the respiratory tract it resides. Remember that $Velocity \left(\frac{d}{t} \right) = \frac{Flow \left(\frac{d^3}{t} \right)}{Area \left(d^2 \right)}$.

باختصار, المقصود هو أنه في الرئتين من الصعب استخدام المعادلات المباشرة لقياس المقاومة بسبب الظروف الفيزيولوجية العقدة، ولذلك يستخدم القياس غير المباشر

3. المعاوقة في القياس في الفيزيولوجيا:


• هذه الشروط صحيحة نظرًا لأن الجسم يحتوي على 23 تقسيمًا في الرئتين، مما يجعل القياس باستخدام المعادلة المباشرة غير مدقق.

• بالإضافة إلى ذلك، يصعب قياس القيم 1 و 2 بدقة في الرئتين بسبب تقسيماتها المعدة

5. مقاومة المجاري الهوائية:

• مقاومة المجاري الهوائية، لكن من المهم معرفة المكان الذي توجد في هذه المقاومة داخل الجهاز

Plotting the velocity of air against lung divisions gives us the following figure:

When the velocity of air is high, the (total division-specific) cross-sectional area is small, and thus the resistance is high. This means that nearly 40% of the airway resistance contribution is from airways above the larynx, another 40% of resistance is present in the first 4 divisions, and the last 20% of resistance is present in the rest of divisions where the velocity becomes very low and almost reaches zero.

So, most of the airway resistance normally resides in the larger divisions.

2. تفسير العلاقة:

عند ارتفاع سرعة الهواء، تكون المساحة العرضية (المحددة للتقسيمات الفردية) صغيرة، مما يعني أن المقاومة في هذه النقطة تكون عالية، بينما آخر، في المراحل الأولى من التقسيم، حيث تكون المجاري الهوائية أكبر (مثل الأنابيب الرئوي والقصبة الهوائية)، تكون المقاومة أكبر لأن السرعة أعلى.

40% من المقاومة الهوائية تأتي من المجاري الهوائية التي تقع فوق الحنجرة، أي في التقسيمات العليا (مثل القصبة الهوائية والشعب الهوائية الكبيرة).

40% أخرى من المقاومة تأتي من المجاري الهوائية في أول 4 تقسيمات (حيث تكون المسافة قصيرة والمساحة منخفضة).

آخر 20% من المقاومة توجد في التقسيمات الأخرى، حيث تصبح السرعة منخفضة جدًا وتقرب من الصفر. في هذه المرحلة، تكون المجاري الهوائية أصغر حجمًا (التقسيمات الأصغر) وتساهم في قليل من المقاومة.

3. الاستنتاج:

معظم مقاومة المجاري الهوائية توجد في التقسيمات الأكبر (التقسيمات العليا) حيث تكون سرعة الهواء أعلى والمجاري الهوائية أكبر.

هذا يوضح أن مقاومة المجاري الهوائية تكون أعلى في التقسيمات العليا من الرئتين، وتختفي مع التقسيمات الأصغر حيث تصبح سرعة الهواء منخفضة

Pathological Airway Resistance

In pathological conditions that show increased airway resistance, which parts of the airways contribute most to this increased resistance?

The large airways are surrounded by cartilage that prevents them from collapsing, and they are, by definition, larger, so accumulation of mucus, for example, will not significantly narrow them. On the other hand, smaller divisions lack supporting cartilage and have narrower diameters, making them vulnerable to significant obstruction by mucus.

٢. المعلقة بالمساعدات المخاطية (mucolytic drugs) لإزالة المخاط والمساعدة في التخلص منه، مما يحافظ على المجرى الهوائي الصغيرة مفتوحة يتم استخدام الأدوية الموسعة للمخاط Clinically, mucolytic drugs are given to dissolve the mucus and aid in its removal, and this maintains smaller divisions patent. Remember that mucus is composed of organic compounds (primarily glycoproteins) and water. When water is reabsorbed from the accumulated mucus, only the hard part stays, which is why drugs are needed.

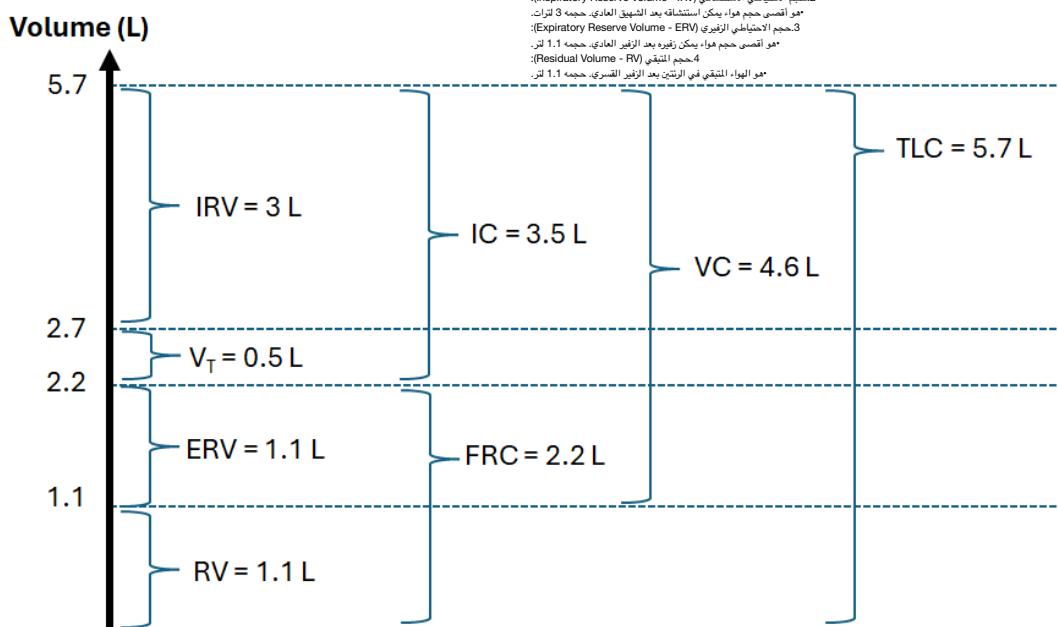
Coughing reflexes are of great importance here, and this is why drugs that stop coughing are contraindicated in patients with productive cough. They are also contraindicated in children as children usually cannot express their exact symptoms.

Smoking worsens this case by many ways, including increasing mucus secretion by goblet cells, and paralyzing the cilia, which normally remove mucus outside the respiratory tract.

In addition to the absence of cartilage and the narrow diameter, smaller airways have more smooth muscle content, which makes them more vulnerable to severe bronchoconstriction, which is induced by several inflammatory mediators such as leukotrienes, prostaglandins, and histamine. This is primarily what happens in asthma.

All these facts explain why smaller airways, not larger ones, are responsible for increased airway resistance in pulmonary diseases. الاستنتاج 6

During what phase does high airway resistance show up more?


As mentioned before, obstructive pulmonary diseases mainly show difficulty in exhaling, not inhaling. This is mainly because of intrapleural pressure changes. Higher intrapleural pressure, which is the case during exhalation, causes the collapse of the airways, further exacerbating the obstruction in addition to the aforementioned causes.

Because the resistance increases the required driving force to maintain normal flow, additional work must be done to increase intrapleural pressure during exhalation. This fact makes exhalation a “paid” process, increasing energy expenditure significantly above the normal 2%. Note that $Work = \Delta P * \Delta V$; $\Delta P = DF$; $\Delta V = Tidal\ Volume$.

This difficulty in exhalation shows as a wheezing sound, which varies with severity.

The following figure shows all 4 volumes and 4 capacities (sum of volumes) of the lungs and their approximate physiological values.

Inspiratory Capacity (IC): the maximum volume of air that can be inspired starting from the end of a normal expiration; it equals $V_T + IRV$.

Functional Residual Capacity (FRC): the volume of air remaining in the lungs at the end of a normal, passive expiration; it equals $ERV + RV$.

Vital Capacity (VC): the maximum volume of air that can be expelled forcefully following a maximal inspiration; it equals $IRV + V_T + ERV$ (all volumes except RV).

Total Lung Capacity (TLC): the total volume of air in the lungs after a maximal inspiration; it equals $VC + RV$ (all 4 volumes).

Residual volume (RV) is not the same as the resting lung volume (150 mL). RV is the volume of air remaining in the lungs after maximal forced expiration (1100 mL), mainly due to airway closure and gas trapping. In contrast, the resting lung volume is a theoretical volume reflecting the lung's intrinsic elastic equilibrium if all distending forces were removed, which does not happen in physiological conditions. The resting lung volume is about 150 ml (not zero because of air trapping). Thus, RV is a measured physiological volume, whereas the resting lung volume is a property of lung elasticity, and they are fundamentally different.

الاستنشاق: يتم استنشاقه وزفيره في الرئتين على التعامل مع الهواء تحت مخالن المظروف

القدرة الحيوية (-VC): هذه الاحجام والقدرات تتأثر بغير حجم الهواء الذي

يمكن زفيره بعد استنشاقه من اقصى كمية

هوا، وتساوي $RV + V_T + ERV + 1.1$ لتر = 4.6 لتر

لترات $0.5 + 1.1 = 1.6$ لتر

All volumes and capacities, except those depending on RV, can be calculated using a spirometer. RV, TLC, and FRC need other methods. FRC calculation is shown next.

كلية حساب الاحجام والقدرات:
جميع الاحجام والقدرات يمكن حسابها باستخدام جهاز السبيرومتر باستثناء الاحجام التي تتعذر على حجم المتبقى (RV).
حجم المتبقى (RV)، القدرة الرئوية الكلية (TLC)، والقدرة المتبقية الظيفية (FRC) تتطلب طرقاً أخرى لقياسها، مثل اختبار الغازات أو التصوير الطبي.

الخلاصة:
حجم المتبقى (RV) هو الحجم الذي يبقى في الرئتين بعد أقصى زفير، ويعكس التفاعل بين مقاومة المجرى الهوائي وحجم الهواء.
حجم الرئة عند الراحة هو حجم النظري يعتمد على مرتبة الرئة الظاهرة.
هو حجم قابل لقياس، بينما حجم الراحة هو خاصية مرتبة الرئة RV.

الشرح في هذا النص يتعلق بقياس القدرة المتبقيّة الوظيفية (Functional - FRC) باستخدام طريقة تخفيف الهيليوم (Helium Dilution Method). هذه الطريقة تعتمد على مبدأ حفظ الكثافة وهي تستخدم الغاز الهيليوم (He) كغاز غير قابل للذوبان، حيث يمكن استخدام درجة تخفيف الهيليوم لحساب حجم الرئة المجهول، وهو الحجم المتبقي الوظيفي (FRC).

Measurement of Functional Residual Capacity (FRC)

Helium Dilution Method

The helium dilution method is based on the principle of conservation of mass.

Helium (He) is an inert, insoluble gas that:

- Does **not** diffuse across the alveolar–capillary membrane
- Is **not** absorbed into blood

Therefore, when a known amount of helium is allowed to mix with the gas in the lungs, the **degree of helium dilution** can be used to calculate the unknown lung volume, which is the functional residual capacity (FRC).

1. A system (analogous to a breathing bag) is filled with a known gas volume (V_1) containing helium at a known concentration (C_1).
2. The patient is connected to the system **at the end of a normal expiration**, when lung volume equals **FRC**.
3. The subject breathes normally from the closed system.
4. Helium gradually mixes between the spirometer gas and the lung gas.
5. After equilibration, the helium concentration becomes uniform and is measured as the **final concentration (C_2)**.

خُلُوط قياس القدرة المتبقيّة الوظيفية (FRC) باستخدام طريقة تخفيف الهيليوم:

1. إعداد النظام: يتم ملء النظام (المشتاب لكبس التنفس) بحجم معين من الغاز الذي يحتوي على الهيليوم بتركيز معروف 1- C_1 .
2. توصيل المريض بالنظام في نهاية الزفير العادي، حيث يكون حجم الرئة في هذه اللحظة هو القدرة المتبقيّة الوظيفية (FRC).
3. التنفس الطبيعي: يبدأ المريض بالتنفس بشكل طبيعي من النظام المغلق.
4. احتلاط الهيليوم: يختلط الهيليوم تدريجياً بين الغاز في السبيروميتريّر/جهاز قياس التنفس والغاز الموجود في الرئتين.
5. التوازن: بعد الوصول إلى التوازن، يصبح تركيز الهيليوم في النظام موحداً ويتم قياسه باعتماد التركيز النهائي 2- C_2 .

Conservation of helium:

$$\text{Initial amount of He} = \text{Final amount of He}$$

$$C_1 \times V_1 = C_2 \times (V_1 + FRC)$$

Final Equation:

$$FRC = V_1 \left(\frac{C_1}{C_2} - 1 \right)$$

حفظ (الهيليوم):

حفظ الكثافة يعني أن كثافة الهيليوم الأصلية هي نفسها الكثافة النهائية بعد الاحاطة.

$$C_1 \times V_1 = C_2 \times (V_1 + FRC)$$

حيث:

- C_1 هو تركيز الهيليوم الأول.
- هو حجم الغاز في الاطمئنة.
- C_2 هو تركيز الهيليوم النهائي.
- FRC هو الحجم المتبقي الوظيفي.

المعادلة النهائية لحساب FRC:

$$FRC = V_1 \times \left(\frac{C_1}{C_2} - 1 \right)$$

A **greater drop** in helium concentration (C_2 much less than C_1) indicates a **larger FRC**.

A **small change** in helium concentration indicates a **smaller FRC**.

الزيادة في تركيز الهيليوم (C_2) أقل بكثير من C_1 : تعني FRC أكبر.
الانخفاض في تركيز الهيليوم (C_2) أقرب إلى C_1 : تعني FRC أصغر.

الاستنتاج:

• كلما كانت درجة تخفيف الهيليوم أكبر (أي كان C_2 أقل بكثير من C_1 ، كانت القدرة المتبقيّة الوظيفية (FRC) أكبر، مما يعني أن الرئتين تحتويان على هواء أكثر بعد الزفير القسري

Changes from VERSION 0 to VERSION 1:

- Added page **7** (FRC calculations)
- Clarified more about the resting lung volume and differentiating it from residual volume (in page **6**)